期刊文献+

基于视觉标记板的自动驾驶车辆激光雷达与相机在线标定研究 被引量:6

An On-Line Calibration Method Between Laser and Camera in Autonomous Driving Vehicle Based on Visual Marker Board
下载PDF
导出
摘要 针对传统的高清相机和激光雷达外部参数手动或半自动化标定程序繁琐和耗时问题,提出一种适用于地面无人平台车载激光雷达和相机在线自动标定的方法,以安装标记板(Marker)的移动车辆为标定目标,实现车辆的快速识别和位姿估计。同时获取在两种传感器中得到的位姿估计结果,利用经典的定向求解方法计算得到相机与激光雷达之间的刚性转换关系,并在真实城区环境中利用最优评估优化减小标定误差,试验结果证明了所提方法的准确性与可靠性。 It’s tedious and time-consuming to calibrate manually or semi-automatically external parameters of traditional HD camera and laser radar.To solve this problem,a novel method is presented to calibrate the laser and camera automatically for the unmanned ground vehicles.The method uses a vehicle mounted with a marker as the calibration object to make the target to be estimated rapidly.Pose estimation result is obtained from 2 sensors,and the classical oriental solution is used to calculate the rigid conversion relation between camera and laser radar,the optimal evaluation optimization is used to reduce calibration error in real urban environment,test results prove accuracy and reliability of the proposed method.
作者 吴琼 时利 谢欣燕 岳丽姣 Wu Qiong;Shi Li;Xie Xinyan;Yue Lijiao(Anhui Province Key Laboratory of Intelligent Connected Vehicle Technology,Technical Center,Anhui Jianghuai Automobile Group Co.,Ltd.,Hefei 230601)
出处 《汽车技术》 CSCD 北大核心 2020年第4期40-44,共5页 Automobile Technology
基金 安徽省新能源汽车暨智能网联汽车产业技术创新工程项目。
关键词 激光雷达 相机 在线自动标定 无人驾驶车辆 Laser Camera Automatic extrinsic calibration Unmanned ground vehicles
  • 相关文献

参考文献2

二级参考文献14

  • 1陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,25(2):11-16. 被引量:76
  • 2王荣本,赵一兵,李琳辉,张明恒.智能车辆的障碍物检测研究方法综述[J].公路交通科技,2007,24(11):109-113. 被引量:31
  • 3Petrovskaya A, Thrun S. Model based vehicle detection andtracking for autonomous urban driving[Jj. Autonomous Robots,2009,26(2/3): 123-139.
  • 4Momemerlo M, Becker J, Bhat S, et al. Junior: The Stanfordentry in the urban challenge[J|. Journal of Field Robotics, 2008,25(9): 569-597.
  • 5Ferguson D, Darms M, Urmson C, et al. Detection, predic-tion, and avoidance of dynamic obstacles in urban environ-ments[C]//lEEE Intelligent Vehicles Symposium. Piscataway,USA: IEEE, 2008: 1149-1154.
  • 6Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving inurban environments: Boss and the urban challengejj]. Journalof Field Robotics, 2008,25(8): 425-466.
  • 7Mertz C, Navarro-Serment L E, MacLachlan R, et al. Mov-ing object detection with laser scanners[J]. Journal of FieldRobotics, 2013,30(1): 17-43.
  • 8Dorai C, Wang G,Jain A K, et al. Registration and integra-tion of multiple object views for 3D model construction|J].IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 1998,20(1): 83-89.
  • 9Hirnmelsbach M, Muller A,Liittel T, et al. LIDAR-based 3D ob-ject perception [C ]//Proceedings of 1st International Workshopon Cognition for Technical Systems. 2008.
  • 10Pears N E. Feature extraction and tracking for scanning rangesensors[J]. Robotics and Autonomous Systems, 2000, 33(1):43-58.

共引文献44

同被引文献28

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部