期刊文献+

List Vertex-arboricity of Planar Graphs without Intersecting 5-cycles 被引量:1

原文传递
导出
摘要 The vertex-arboricity a(G)of a graph G is the minimum number of colors required for a vertex coloring of G such that no cycle is monochromatic.The list vertex-arboricity al(G)is the list-coloring version of this concept.In this paper,we prove that every planar graph G without intersecting 5-cycles has al(G)≤2.This extends a result by Raspaud and Wang[On the vertex-arboricity of planar graphs,European J.Combin.29(2008),1064-1075]that every planar graph G without 5-cycles has a(G)≤2.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第2期439-447,共9页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11971437,11771402) the Natural Science Foundation of Zhejiang Province(No.LY19A010015).
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部