期刊文献+

On Some Cycles in Wenger Graphs

原文传递
导出
摘要 Let p be a prime,q be a power of p,and let Fq be the field of q elements.For any positive integer n,the Wenger graph Wn(q)is defined as follows:it is a bipartite graph with the vertex partitions being two copies of the(n+1)-dimensional vector space Fq^n+1,and two vertices p=(p(1),…,p(n+1))and l=[l(1),…,l(n+1)]being adjacent if p(i)+l(i)=p(1)l(1)i-1,for all i=2,3,…,n+1.In 2008,Shao,He and Shan showed that for n≥2,Wn(q)contains a cycle of length 2 k where 4≤k≤2 p and k≠5.In this paper we extend their results by showing that(i)for n≥2 and p≥3,Wn(q)contains cycles of length 2k,where 4≤k≤4 p+1 and k≠5;(ii)for q≥5,0<c<1,and every integer k,3≤k≤qc,if 1≤n<(1-c-7/3 logq2)k-1,then Wn(q)contains a 2 k-cycle.In particular,Wn(q)contains cycles of length 2 k,where n+2≤k≤qc,provided q is sufficiently large.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第2期492-502,共11页 应用数学学报(英文版)
基金 supported by NSF grant DMS-1106938-002,NSFC(Nos.11701372.11801371) Shanghai Sailing Program(No.19YF1435500).
  • 相关文献

参考文献1

二级参考文献7

  • 1Benson, C. Minimal regular graphs of girths eight and twelve. Canad. J. Math., 26:1091-1094 (1966).
  • 2Bondy, J., Simonovits, M. Cycles of even length in graphs. J. Combin. Theory (Series B), 16:97-105 (1974).
  • 3Brown, W.G. On graphs that do not contain a Thomsen graph. Canad. Math. Bull., 9:281-285 (1966).
  • 4Erdos, P. (1965) Extremal problems in graph theory. In: Theory of Graphs and Its Applications (M. Fiedler, ed.) (Proc. Symp. Smolenice, 1963), Academic Press, New York, 1967, 29-36.
  • 5Erdos, P., Renyi, A. On a problem in the theory of graphs. Publ. Math. Inst. Hungar. Acad. Sci., 7A: 623-641 (1962).
  • 6He, C.X., Li, Y.S., Yuan, X.Y. Turan number of even cycles and Wenger's graph. J. of Tongji University, 3:431 434 (2007) (in Chinese).
  • 7Wenger, R. Extremal graphs with no C′4s, C′6s, or C′10s. J. Combin. Theory (Series B), 52:113-116 (1991).

共引文献1

  • 1Li-Ping Wang,Daqing Wan,Weiqiong Wang,Haiyan Zhou.On Jumped Wenger Graphs[J].Communications in Mathematical Research,2022,38(2):319-332.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部