期刊文献+

基于对偶主题空间的PLS图像标注方法

PLS Image Annotation Based on Dual Mode Semantic Space
下载PDF
导出
摘要 为提高图像标注精度,针对如何融合图像文本特征和视觉特征的问题,提出基于对偶主题空间的图像标注技术。首先将图像的视觉特征与文本标注表示为同一对象的两种视图方式,运用偏最小二乘(PLS)的多元统计分析理论,考虑两个特征空间之间的语义对偶关系,抽取得到双模态共有语义信息;然后在双模主题构成的对称空间上构建一个非概率主题标注模型;最后,待标注图像根据视觉特征在对偶主题空间的投影计算出标注的预测向量,设置阈值得到标注关键词。在公共数据集Core5K上进行算法性能的测试,实验表明,基于对偶主题空间的标注算法可以有效提高图像标注的性能和标签准确的个数。 In order to improve the accuracy of image annotation, and solve the problem of how to integrate text features and visual features of images, this paper puts forward an image annotation algorithm based on dual theme space. Firstly, the visual features and text annotation of image are represented as two views of the same object. Based on the multiple statistical analysis theory of partial least squares(PLS), the semantic dual relationship between the two feature spaces is considered to extract the dual shared semantic information. Then, a non-probabilistic annotation model is constructed on the symmetric space composed of dual theme. Finally, the predicted annotation vectors are calculated by the projection of visual features on dual theme space, the annotation texts of a new image are selected by setting the threshold. The algorithm performance is tested on the public data set of Core5 K, experiments show that the proposed algorithm based on dual mode semantic space can effectively improve the performance of image annotation and the number of annotation accuracy.
作者 曹瑛 CAO Ying(Information center,Jiangxi University of Science and Technology,Ganzhou 341000,China;College of Computer Engineering,Jeonju University,Jeonju 561756,Korea)
出处 《控制工程》 CSCD 北大核心 2020年第2期240-245,共6页 Control Engineering of China
基金 国家自然科学基金资助项目(61363040) 江西省教育厅科技项目(GJJ161680)。
关键词 双模态 语义 图像标注 对偶主题 偏最小二乘 double modal semantic image annotation dual theme PLS
  • 相关文献

参考文献6

二级参考文献121

  • 1邱方鹏,冯玉才,梁俊杰.基于纹理和形状的图像相关反馈检索[J].计算机应用,2005,25(4):775-777. 被引量:8
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3施智平,李清勇,史俊,史忠植.集成视觉特征和语义信息的相关反馈方法[J].计算机辅助设计与图形学学报,2007,19(9):1138-1142. 被引量:4
  • 4Vasconcelos N. Minimum probability of error image retrieval[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2322-2336
  • 5Rasiwasia N, Moreno P J, Vasconcelos N. Bridging the gap: query by semantic example [J].IEEE Transactions on Multimedia, 2007, 9(5):923-938
  • 6Goh K S, Chang E, Cheng K T. SVM binary classifier ensembles for image classification [C]//Proceedings of the 10th International Conference on Information and Knowledge Management, Atlanta, 2001:395-402
  • 7Cusano C, Ciocca G, Schettini R. Image annotation using SVM [C]//Proceedings of SPIE, San Jose, 2004, 5304:330 -338
  • 8Gao Y L, Fan J P, Xue X Y, et al. Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers [C] //Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, 2006:901-910
  • 9Chang E, Goh K, Sychay G, et al. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1):26-38
  • 10Town C, Sinclair D. Content based image retrieval using semantic visual categories [ R].Cambridge: AT&T Laboratories, 2001

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部