期刊文献+

一类分布式零等待流水线自适应EDA调度 被引量:1

Adaptive Estimation of Distribution Algorithm for Solving a kind of Distributed No-waiting Flow Shops
下载PDF
导出
摘要 随着经济的发展,在各行各业中分布式生产变得越来越普及,故将更多的注意力放在分布式生产模型之上。为求解带有序相关设置时间和到达时间的零等待分布式流水线调度问题(No-wait Distributed Flow Shop with Sequence Dependent Setup Times and Arrival Times,NDPFSP with SDSTs and RDs),提出了一种自适应的分布估计算法(Adaptive Estimation of Distribution Algorithm, AEDA),用于最小化最大完成时间。首先,提出了更加适合于带到达时间问题的最早完成工厂问题的带有到达时间的最早完成工厂(the Earliest Completion Factory with Arrival Time, ECFAT)规则,使得解的生成过程有适当的判断,更加快速地提高当前代生成解的质量。其次,针对不同的问题规模进行局部搜索的深度做出相应的调整,使得在不同的规模下算法都能有很好的局部搜索能力。 With the development of the economy, distributed permutation production becomes more and more widespread in all walks of life, more attention is put on distributed models. An adaptive estimation of distribution algorithm(AEDA) is proposed for solving no-wait distributed permutation flow shop with Sequence Dependent Setup Times and Arrival times(NDPFSP with SDSTs and RDs) and minimizing the largest completion time. First of all, this paper proposes the earliest completion factory with arrival time(ECFAT), which is more suitable for this problem, can make a judgment in the generation process of solution and improve the quality of the current solution faster. Next, according to different problem scales, the proposed local search can adjust the depth of local search to ensure its ability for solving this problem.
作者 张振磊 摆亮 胡蓉 钱斌 车国霖 ZHANG Zhen-lei;BAI Liang;HU Rong;QIAN Bin;CHE Guo-lin(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;National Computer network Emergency Response technical,Beijing 100029,China)
出处 《控制工程》 CSCD 北大核心 2020年第2期374-379,共6页 Control Engineering of China
基金 国家自然科学基金项目(51665025,61963022,60904081) 云南省自然科学基金重点项目(2015FB136)。
关键词 零等待分布式流水线调度 到达时间 自适应分布式估计算法 分配规则 No-wait distributed permutation flow shop arrival times adaptive estimation of distribution algorithm allocation rule
  • 相关文献

参考文献2

二级参考文献99

  • 1盛立纲,顾幸生.混合遗传NEH算法在流水车间调度中的应用[J].控制工程,2010,17(4):497-500. 被引量:5
  • 2陈明杰,刘胜.改进自适应遗传算法在函数优化中的应用研究[J].哈尔滨工程大学学报,2007,28(8):875-879. 被引量:32
  • 3Shapiro J L. Drift and scaling in estimation of distribution algorithms. Evolutionary Computation, 2005, 13(1):99-123
  • 4Zhang Q, Miihlenbein H. On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 127-136
  • 5Zhang Q. On the convergence of a factorized distribution algorithm with truncation selection[Online], available: http://cswww.essex.ac.uk/staff/zhang/EDAWEB/,May 10, 2006
  • 6Zhang Q. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 80-93
  • 7Rastegax R, Meybodi M Ft. A study on the global convergence time complexity of estimation of distribution algorithms. Lecture Notes in Computer Science, 2005, 3641:441-450
  • 8Gao Y, Culberson J. Space complexity of estimation of distribution algorithms. Evolutionary Computation, 2005,13(1): 125-143
  • 9Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 2002, 31(3): 221-258
  • 10Muhlenbein H, HSns R. The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation, 2005, 13(1): 1-27

共引文献239

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部