期刊文献+

基于单值中智模型的数据产品服务商选择 被引量:2

The Selection of Data Product Service Provider Based on the Single-valued Neutrosophic Model
下载PDF
导出
摘要 针对评估信息为单值中智数且属性权重完全未知的多属性决策问题,建立一种基于单值中智熵的多属性决策模型。首先,引入了新的单值中智熵的公理化定义;其次,运用余弦函数,提出了一种衡量单值中智数不确定性的信息熵公式,并证明其满足单值中智熵的4个公理化条件;然后以不确定信息最小化为准则设计最优化模型,确定属性权重,并构建一种属性权重完全未知的单值中智多属性决策方法;最后,将提出的决策方法运用于数据产品服务商的选择问题,并通过对比分析说明了本文方法的合理性与有效性。 For the single-valued neutrosophic multi-attribute decision making(MADM) problems that the attribute weights are completely unknown, a novel MADM method is developed on the basis of single-valued neutrosophic entropy. First, a new axiomatic definition of single-valued neutrosophic entropy is introduced. Then, by using the cosine function, a single-valued neutrosophic information entropy formula is constructed to measure the uncertainty of SVNV, and it is proved that the constructed formula satisfies the four axiomatic requirements of single-valued neutrosophic entropy. In addition, a programming model is proposed to determine optimal attribute weights with the principle of minimum uncertain information, and a single-valued neutrosophic MADM method is investigated that the attribute weights are completely unknown. In the end, a numerical example of selection for data product service provider is provided, and the rationality and effectiveness of the developed method are certified by comparing with the existing method.
作者 时恩早 SHI En-zao(Department of Information Engineering,Jiangsu Food and Pharmaceutical Science College,Huai'an 223003,China)
出处 《控制工程》 CSCD 北大核心 2020年第2期391-395,共5页 Control Engineering of China
基金 淮安市精准农业技术实验室(HAP201703)。
关键词 单值中智集 信息熵 余弦函数 最优化模型 多属性决策 Single-valued neutrosophic sets(SVNSs) entropy cosine function optimal model multi-attribute decision making
  • 相关文献

参考文献4

二级参考文献44

  • 1徐泽水,陈剑.一种基于区间直觉判断矩阵的群决策方法[J].系统工程理论与实践,2007,27(4):126-133. 被引量:140
  • 2Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8(3): 338-353.
  • 3Zadeh L A. The concept of a linguistic variable andits application to approximate reasoning[J]. InformationScience, 1975, 8(3): 199-249.
  • 4Mendel J M, John R I B. Type-2 fuzzy sets made simple[J].IEEE Trans on Fuzzy Systems, 2002, 10(2): 117-127.
  • 5Niewiadomski A. Imprecision measures for type-2fuzzy sets: Applications to linguistic summarization ofdatabases[J]. Lecture Notes in Artificial Intelligence, 2008,5097: 285-294.
  • 6Burillo P, Bustince H. Entropy on intuitionistic fuzzysets and on interval-valued fuzzy sets[J]. Fuzzy Sets andSystems, 1996, 78(3): 305-316.
  • 7De Luca A, Termini S. A definition of a nonprobabilisticentropy in setting of fuzzy sets theory[J]. Information andControl, 1972, 20(4): 301-312.
  • 8PedyrezW. Why triangular membership function[J]. FuzzySets and Systems, 1994, 64(1): 21-30.
  • 9Pedyrez W. Interfaces of fuzzy models: A study in fuzzyinformation processing[J]. Information Science, 1996,90(1-4): 231-280.
  • 10Chen Y H, Wang W J. Fuzzy entropy managementvia scaling, elevation and saturation[J]. Fuzzy Sets andSystems, 1998, 95(2): 173-178.

共引文献82

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部