期刊文献+

Robust Variational Bayesian Adaptive Cubature Kalman Filtering Algorithm for Simultaneous Localization and Mapping with Heavy-Tailed Noise 被引量:4

原文传递
导出
摘要 Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm.
作者 ZHANG Zhuqing DONG Pengu TUO Hongya LIU Guangjun JIA He 张铸青;董鹏;庹红娅;刘光军;贾鹤(School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China;Department of Aerospace Engineering,Ryerson University,Toronto,Canada)
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第1期76-87,共12页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(No.61803260)。
  • 相关文献

参考文献1

二级参考文献3

共引文献13

同被引文献39

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部