期刊文献+

放电等离子烧结制备氧离子导体Na0.54Bi0.46Ti0.99Mg0.01O2.95及其电学性能研究 被引量:1

Electrical performance of ionic conductorNa0.54Bi0.46Ti0.99Mg0.01O2.95 prepared by spark plasma sintering
下载PDF
导出
摘要 采用放电等离子烧结制备了钙钛矿结构的钠镁共掺的Na0.54Bi0.46Ti0.99Mg0.01O2.95(NBT-Na4Mg-SPS)氧离子导体材料。通过交流阻抗测试,在573 K温度下NBT-Na4Mg-SPS试样的氧离子电导率可以达到4.7×10^-4 S/cm,是母相Na0.5Bi0.5TiO3材料在同温度下氧离子电导率的15.2倍。在介电模谱中观察到一个与热激活相关的弛豫峰,其弛豫参数为E=0.67 eV和τ0=6.47×10^-13 s,该峰源于氧离子在NBT-Na4Mg-SPS试样经空位的短程扩散,较低的弛豫激活能及较高的氧空位浓度使得NBT-Na4Mg-SPS试样具有较好的氧离子电导率,这将对进一步改进Na0.5Bi0.5TiO3材料的电化学性能具有十分重要的意义。 The perovskite Na0.54Bi0.46Ti0.99Mg0.01O2.95 sample was prepared by the spark plasma sintering method.By the impedance spectroscopy test,the grain conductivity of NBT-Na4Mg-SPS sample could reach 4.7×10^-4 S/cm at 573 K,which was around 15.2 times higher than that of the Na0.5Bi0.5TiO3 compound.An apparent relaxation peak which corresponded to a thermally activated process was observed in the dielectric modulus spectroscopy.The relaxation peak parameters measured by changing temperature were observed:E=0.67 eV andτ0=6.73×10^-13 s.Judging from the relaxation parameters,the relaxation peak may correspond to the short diffusion of oxygen ions via oxygen vacancies in the NBT-Na4Mg-SPS sample.The higher grain conductivity of NBT-Na4Mg-SPS sample may result from the lower activation energy and the higher oxygen vacancy content.The results were very meaningful to improve the electrical performance of the Na0.5Bi0.5TiO3 compound.
作者 王玉清 李敏燕 任新成 王伟国 WANG Yuqing;LI Minyan;REN Xincheng;WANG Weiguo(College of Physics and Electronic Information, Yan'an University, Yan'an 716000, China)
出处 《功能材料》 EI CAS CSCD 北大核心 2020年第4期4109-4112,共4页 Journal of Functional Materials
基金 国家自然科学基金青年基金资助项目(11604286) 陕西省能源大数据智能处理省市共建重点实验室基金资助项目(IPBED9)。
关键词 氧离子导体 放电等离子烧结 电导率 氧空位可动性 oxide ionic conductor spark plasma sintering conductivity oxygen vacancy mobility
  • 相关文献

参考文献1

二级参考文献35

  • 1Robertson A D,West A R,Ritchie A G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications[J].Solid State Ionics,1997,(1 2):1-11.
  • 2Julien C,Nazri G A. Solid State Batteries:Materials Design and Optimization[M].Boston:Kluwer Academic Publications,1994.
  • 3Takahashi T. High Conductivity Solid Ionic Conductors:Recent Trends and Applications[M].Singapore:World Scientific Publishing Co.Ptc.Ltd,1989.201.
  • 4Alpen U V,Rabenau A,Talat G H. Ionic conductivity in Li3N single crystals[J].Applied Physics Letters,1977,(12):621-623.
  • 5Bohnke O,Bohnke C,Fourquet J L. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate[J].Solid State Ionics,1996,(1-2):21-31.
  • 6Thangadurai V,Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research[J].Ionics,2006,(01):81-92.doi:10.1007/s11581-006-0013-7.
  • 7Aono H,Imanaka H,Adachi G Y. High Li+conducting ceramics[J].Accounts of Chemical Research,1994,(09):265-270.
  • 8Adachi G Y,Imanaka N,Aono H. Fast Li+ conducting ceramic electrolytes[J].Advanced Materials,1996,(02):127-135.
  • 9Mizuno F,Hayashi A,Tadanaga K. High lithium ion conducting glass-ceramics in the system Li2S-P2S5[J].Solid State Ionics,2006,(26-32):2721-2725.
  • 10Bates J B,Dudney N J,Neudecker B. Thin-film lithium and lithium-ion batteries[J].Solid State Ionics,2000,(1-4):33-45.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部