期刊文献+

三维网络结构氧化铜纳米线锂离子电池负极材料的制备和性能研究 被引量:3

3D CuO network as anode material for lithium ion battery
下载PDF
导出
摘要 通过阳极氧化法和后退火处理在铜箔上合成了三维网络结构氧化铜纳米线,将其作为负极材料制备了无需添加粘结剂的锂离子电池。研究了恒压氧化时间对材料形貌和电化学性能的影响。在1C的倍率下,氧化1000 s制备的CuO纳米线表现出最高的1172 mAh/g首圈放电比容量和594 mAh/g的可逆比容量,500圈循环可逆比容量为607.6 mAh/g,可逆容量保留率为102.3%。交联的三维网络结构CuO纳米线相互支撑,提供稳定的结构,有效缓解了CuO纳米线作为锂离子电池负极材料中的体积膨胀问题,表现出了优异的倍率性能和循环寿命。 Copper oxide nanowires were synthesized on copper foil substrate by anodic oxidation method followed by a simple annealing process.The lithium-ion battery without binder was prepared by using it as anode material.The effect of the anodizing time on the morphology and electrochemical properties of the materials was studied.At the rate of 1 C,the CuO nanowires array with anodizing time of 1000 s showed the highest first discharge specific capacity of 1172 mAh/g and the reversible specific capacity of 594 mAh/g.The reversible specific capacity after 500 circles was 607.6 mAh/g,and the reversible capacity retention rate was 102.3%.It proves that the cross-linked 3D CuO nanowire network could provide a stable structure for lithium ion insertion and removal,which could effectively solve the volume expansion problem of copper oxide materials as anode materials for lithium ion batteries,and exhibit excellent rate performance and cycle life.
作者 曹宇光 肖煌 周佳盈 高云 Manon D'Assuncao Lourenco Kevin Peter Homewood 鲍钰文 夏晓红 CAO Yuguang;XIAO Huang;ZHOU Jiaying;GAO Yun;LOURENCO Manon D'Assuncao;HOMEWOOD Kevin Peter;BAO Yuwen;XIA Xiaohong(School of Materials Science and Engineering, Hubei University, Wuhan 430062, China)
出处 《功能材料》 EI CAS CSCD 北大核心 2020年第4期4142-4147,共6页 Journal of Functional Materials
基金 湖北省自然科学基金杰出基金资助项目(2019CFA079)。
关键词 氧化铜纳米线 阳极氧化 网络结构 无粘结剂 锂离子电池 copper oxidenanowires anodic oxidation network binder-free lithium ion battery
  • 相关文献

参考文献3

二级参考文献134

  • 1Recham N, Chotard IN, Dupont L et al (2010) A 3.6 V lithiumbased fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68-74.
  • 2Park KS, Benayad A, Kang 01 et al (2008) Nitridation-driven conductive Li4TiS012 for lithium ion batteries. I Am Chern Soc 130:14930-14931.
  • 3Amine K, Belharouak I, Chen ZH et al (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052-3057.
  • 4Chen IS, Tan YL, Li CM et al (2010) Constructing hierarchical spheres from large ultrathin anatase Ti02 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. I Am Chern Soc 132:6124-6130.
  • 5Liu I, Cao GZ, Yang ZG et al (2008) Oriented nanostructures for energy conversion and storage. ChemSusChem 1 :676-697.
  • 6Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-499.
  • 7Chen J, Xu LN, Li WY et al (2005) IX-Fe203 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582-586.
  • 8Wang ZY, Wang ZC, Madhavi S et al (2012) o-Fe-Os-mediated growth and carbon nanocoating of ultrafine Sn02 nanorods as anode materials for Li-ion batteries. J Mater Chern 22:2526-2531.
  • 9Larcher 0, Masquelier C, Bonnin 0 et al (2003) Effect of particle size on lithium intercalation into IX-Fe203' J Electrochem Soc 150:AI33-AI39.
  • 10Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366-377.

共引文献27

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部