期刊文献+

基于RSIFICA的行星齿轮箱故障诊断方法 被引量:3

Fault diagnosis method of planetary gear box based on RSIFICA
下载PDF
导出
摘要 为了对行星齿轮箱进行故障检测和诊断,提出了一种基于共振稀疏快速独立分量的分析方法(RSIFICA).该方法首先采用共振稀疏分解对信号进行降维预处理,进行二次共振稀疏分解,构造虚拟通道增加传感器通道数目,同时引入牛顿-辛普森公式对快速独立分量分析方法进行改进.该方法减少包含瞬态冲击的宽带信号的影响,实现信号中振源信号数目的降维.同时,二次分解增加输入FastICA的通道数,解决了独立分量分析方法在提取行星齿轮箱故障特征频率过程中出现欠定盲源和收敛速度缓慢问题,同时提高了FastICA的运算效率.将该方法应用到行星齿轮箱的故障诊断中,包络谱分析结果表明,RSIFICA能准确地提取行星齿轮箱断齿故障特征频率,有效地解决了FastICA的问题,计算效率提高了21.49%.对比实验表明,相比于EMD-FastICA联合方法,RSIFICA能够对齿轮微弱故障特征进行更为有效的提取. To detect and diagnose the planetary gearbox, a method based on resonance sparse improved fast independent component analysis(RSIFICA) was proposed. Firstly, the resonance sparse signal decomposition(RSSD) was used to reduce the dimensionality of the signal and the Newton-Simpson formula was introduced to improve the fast independent component analysis(FastICA). The method reduces the influence of wideband signals including transient impacts and the number of vibration source signals in the signal. Meanwhile, the secondary decomposition increased the number of input channels of FastICA, and solved the problems of underdetermined blind sources and slow convergence speeds in the process of extracting the characteristic frequency of the planetary gearbox by the independent component analysis method. Thus, the computing efficiency of FastICA was also improved. The method was applied to the fault diagnosis of planetary gearboxes. The analysis results of envelope spectrum show that RSIFICA can accurately extract the characteristic frequency of broken gear faults of planetary gearboxes, and the calculation efficiency of FastICA is improved by 21.49%. Comparative experiments show that RSIFICA can solve FastICA problems for accurately diagnosing planetary gearbox faults.
作者 朱静 邓艾东 邓敏强 翟怡萌 孙文卿 王姗 Zhu Jing;Deng Aidong;Deng Minqiang;Zhao Yimeng;Sun Wenqing;Wang Shan(National Engineering Research Center of Turbo-Generator Vibration,Southeast University,Nanjing 210096,China;Anhui Electric Power Design Institute,China Energy Engineering Group,Hefei 230601,China)
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期377-384,共8页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51875100).
关键词 行星齿轮箱 共振稀疏分解 快速独立分量分析 故障诊断 planetary gearbox resonance sparse signal decomposition(RSSD) fast independent component analysis(FastICA) fault diagnosis
  • 相关文献

参考文献9

二级参考文献71

  • 1陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 2赵道利,马薇,梁武科,罗兴锜.水电机组振动故障的信息融合诊断与仿真研究[J].中国电机工程学报,2005,25(20):137-142. 被引量:42
  • 3林秋华,郑永瑞,殷福亮.基于参考独立分量分析的语音增强方法[J].大连理工大学学报,2006,46(6):915-919. 被引量:7
  • 4丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(1):13-20. 被引量:42
  • 5Hyv(a)rinen A,Oja E.Independent Component Analysis:algorithms and applications[J].Neural networks.2000,13:411-430
  • 6Hyv(a)rinen A,Oja E.Independent Component Analysis:A Tutorial[EB/OL].http://www.cis.hut.fi/projects/ica
  • 7ZBAN A Y O, Some variants of Newton's methods[J]. Applied Mathematics Letters, 2004, 17: 677-682.
  • 8u Guo, Kok Kiong Tan. Order-crossing removal in Gabor order tracking by independent component analysis[J]. Journal of Sound and Vibration, 2009, 325(1-2,7):471-488.
  • 9andall R B, Antoni J, Chobsaard S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals[J]. Mechanical Systems and Signal Processing, 2001, 15(5), 945-962.
  • 10awalhi. N, Randall.R.B. Semi-automated bearing diagnostics-three case studies [EB/OL]. http://www.spectraquest.com/tech/SEMI_AUTO_BEARING_DIAGNOSTICS.shtml,2011-4-19.

共引文献147

同被引文献23

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部