期刊文献+

一种局部线性编码的深度学习果蔬分类算法 被引量:8

Deep Learning Fruit and Vegetable Classification Algorithm Based on Local Linear Coding
下载PDF
导出
摘要 传统的图像分类问题多使用人工设计的图像特征进行分类,然而部分果蔬图像存在颜色、纹理和形状差异较小的现象,导致传统特征分类效果不够理想.针对这一问题,本文提出一种融合人工特征和深度学习特征的果蔬分类算法.首先使用Inception V3预训练模型提取果蔬图像的卷积神经网络特征;其次提取图像的颜色直方图和SIFT特征,并对SIFT特征进行局部线性编码;接着使用判别相关分析对特征进行降维融合;最后使用SVM进行训练得到分类器.通过自建果蔬图像数据库下的试验结果表明:DCA降维融合后的特征在果蔬分类准确性和速度上明显优于原特征,识别率达到近97%,更适合果蔬分类. Traditional image classification mostly uses artificial image features for classification.However,some fruit and vegetable images have small differences in color,texture and shape,which leads to the unsatisfactory classification effect of traditional features.In order to solve this problem,this paper proposed a fruit and vegetable classification algorithm combining artificial features and Deep learning features.Firstly,Inception V3 pre-training model was used to extract the convolution features of fruit and vegetable images.Secondly,color histogram and SIFT feature of image were extracted,and local linear coding of SIFT feature was performed.Then using discriminant correlation analysis for feature reduction fusion;Finally,SVM was used to train the classifier.The experiment results of the self-built fruit and vegetable image database show that the dimension-reduction fusion feature is better than the original feature in classification ability and speed,and the recognition rate is nearly 97%,which is more suitable for fruit and vegetable classification.
作者 巨志勇 张泽晨 JU Zhi-yong;ZHANG Ze-chen(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第4期741-745,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(81101116)资助。
关键词 局部线性编码 INCEPTION V3 判别相关分析 果蔬识别 特征融合 local linear coding Inception V3 discriminant correlation analysis fruits and vegetables recognition feature fusion1
  • 相关文献

参考文献4

二级参考文献54

  • 1庄连生,髙浩渊,刘超,等.非负稀疏局部线性编码[J].软件学报,2011,22(增刊(2):89-95.
  • 2Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos. In: Proceedings of the 9th IEEE International Conference. Nice, France: IEEE, 2003. 1470-1477.
  • 3Csurka G, Dance C R, Fan L X, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proceed- ings of the 2004 ECCV International Workshop on Statisti- cal Learning in Computer Vision. Grenoble, France: ECCV, 2004. 1-22.
  • 4Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene cat- egories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2169-2178.
  • 5Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyra- mid matching using sparse coding for image classification. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1794-1801.
  • 6Wang J J, Yang J C, Yu K, Lv F J, Huang T S, Gong Y H. Locality-constrained linear coding for image classification. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3360-3367.
  • 7Yang J C, Wang J P, Huang T. Learning the sparse represen- tation for classification. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo (ICME). Barcelona, Spanish: IEEE, 2011. 1-6.
  • 8Yu K, Zhang T, Gong Y H. Nonlinear learning using lo- cal coordinate coding. In: Proceedings of the 2009 Ad- vances in Neural Information Processing Systems. Vancou- ver, Canada: NIPS, 2009. 2223-2231.
  • 9Hoyer P O. Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing. Falmouth, USA: IEEE, 2002. 557-565.
  • 10Zhang C J, Liu J, Tian Q, Xu C S, Lu H Q, Ma S D. hnage classification by non-negative sparse coding, low-rank and sparse decomposition. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 1673-1680.

共引文献24

同被引文献73

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部