摘要
介绍一种基于无监督神经网络的声纹识别方法。提取语音Filter Banks特征并将其输入神经网络特征提取器x-vec tor提取紧凑的较低维度说话人表征特征向量,并采用批处理自组织神经网络BLSOM进行自适应聚类训练。实验结果表明,该方法具有较好的声纹聚类识别效果。
Introduces a voiceprint recognition method based on unsupervised neural network.Speech Filter Banks features are extracted and input to the deep learning feature extractor x-vector to extract compact lower-dimension speaker characterization feature vectors,and batch self-or ganizing neural network BLSOM is used for adaptive cluster training.The experimental results show that the method has better recognition effect of voiceprint clustering.
作者
项扬
殷锋
袁平
XIANG Yang;YIN Feng;YUAN Ping(College of Computer Science,Sichuan University,Chengdu 610065;School of Computer Science and Technology,Southwest University for Nationalities,Chengdu 610041;School of Mathematics and Information engineering,Chongqing University of Education,Chongqing 400067)
出处
《现代计算机》
2020年第9期3-7,共5页
Modern Computer
基金
科技部国家重点研发计划“综合交通运输与智能交通”重点专项(No.2018YFB1601200)
四川省科技厅省重大科技专项(No.2019YFG0184)
自然科学基金民航联合基金重点项目(No.U1533203)。