期刊文献+

基于卷积神经网络的SAR舰船检测算法 被引量:3

SAR Ship Detection Algorithm Based on Convolutional Neural Network
下载PDF
导出
摘要 合成孔径雷达(SAR)是全天候全天时的传感器,如GF-3、Sentinel-1、TerraSAR-X等,可以产生高分辨率SAR图像,被广泛应用于船舶交通监测、军事和民用领域。SAR图像中的船舶作为重要的军事和民用目标,是需要重点关注的对象。通过针对开放的OpenSARShip数据集进行实验,并引入基于卷积神经网络的检测算法建立相关检测模型,与传统的CFAR算法进行对比分析,结果显示基于卷积神经网络的检测算法可以获得较高的检测精度,要明显高于传统的CFAR检测算法,该研究结果可为SAR图像船舶检测的人工智能化技术提供一些方法上的参考和指导。 Synthetic Aperture Radar(SAR)is an all-day and all-weather sensors,such as GF-3,TerraSAR-X,RADARSAT-2 and Sentinel-1,which can produce high resolution SAR image.SAR images are widely used in ship traffic monitoring,military and civil fields.As an im portant military and civil target,ships in SAR images need to be focused on.In this paper,a detection algorithm based on convolution neu ral network is introduced to establish a detection model,and experiments are carried out on open OpenSARShip data sets.And compared with conventional CFAR algorithms.The results show that the detection algorithm based on convolution neural network can achieve higher detection accuracy,which is significantly higher than the traditional CFAR detection algorithm.The research results of this paper can pro vide some reference and guidance for the artificial intelligent technology of ship detection in SAR images.
作者 戴文鑫 DAI Wen-xin(College of Computer Science,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2020年第9期64-68,共5页 Modern Computer
关键词 合成孔径雷达 船舶目标检测 深度学习 Synthetic Aperture Radar(SAR) Ship Detection Deep Learning
  • 相关文献

参考文献1

二级参考文献8

  • 1M Walessa, M Datcu. Model-based despeckling and information extraction form SAR images[J]. IEEE Trans. Geosci. Remote Sens. , 2000,38(9) : 2258-2269.
  • 2Dai M, Peng C, Chan A K, et al. Bayesian wavelet shrinkage with edge detection for SAR image despeckling[J]. IEEE Trans. Geosci. Remote Sens. ,2004,42(8) : 1642-1648.
  • 3E P Simoncelli. Bayesian denoising of visual images in the wavelet domain[M]//Bayesian Inference in Wavelet Based Models. Miler P, Vidakovic B, Eds. New York: Springer-Verlag, 1999.
  • 4Levent S Endur, Ivan W Selesnick. Bivariate shrinkage functions for wavelet- based denoising exploiting interscale dependency[J]. IEEE trans, on signal processing (S1053--587X), 2002, 50(11):2744-2756.
  • 5Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994(81):425-455.
  • 6Xie H, Pierce L, Ulaby F T. Statistical properties of logarithmically transformed speckle[J]. IEEE Trans. Geoscienee and Romote Sensing, 2002,40(3) :721-727.
  • 7Stephane Mallat著,杨力华,戴道清,黄文良译.信号处理的小波导引[M].北京:机械工业出版社,2002.
  • 8文成林,王雪,侯玉华.自回归过程的小波神经网络逼近算法[J].河南大学学报(自然科学版),2000,30(1):39-42. 被引量:1

共引文献1

同被引文献26

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部