期刊文献+

关于可解群是超可解群的一个结论

Some conclusion about solvable group is supersolvable group
下载PDF
导出
摘要 有限群的性质是极其丰富的,它在各个自然科学中起到了极其重要的作用。首先给出拟正规子群的定义,对这个定义作深入的研究,得到几个引理,然后给出了2-极大子群的定义,用前面已经证明的几个引理,并借助次正规子群的性质,证明当2-极大子群均为拟正规时,群G是超可解的,当群G的阶的素因子个数不小于3时,群G还是幂零的。 The properties of finite group is extremely rich,in various natural sciences it played an extremely important role。First the definition of is presented,and this definition is researched in deep level,got a few lemma,then gives the definition of 2-great subgroup,base on several lemma has been proved,and with the aid of the properties of subnormal subgroup,proved when 2-great subgroup are quasi-normal,the solvability of group G is supersolvable,and when a the number of prime divisor of group G’s order is not less than 3,G is nilpotent group.
作者 曾利江 ZENG Li-jiang(Northern Gizhou Istitute of Culture and Economy,Zunyi Normal University,Zunyi 563006,Guizhou China)
出处 《贵阳学院学报(自然科学版)》 2020年第1期1-3,共3页 Journal of Guiyang University:Natural Sciences
关键词 有限群 拟正规子群 2-极大子群 超可解群 finite group quasi-normal subgroup 2-great subgroup supersolvable group
  • 相关文献

参考文献3

二级参考文献20

  • 1LI D, GUO X. The influence of c - normality of subgroups on the structure of finite groups [J].Journal of Pure and Applied Algebra, 2000,150 : 53 - 60.
  • 2DOERK K, HAWKES T.Finite Soluble Groups [M]. Berlin - New York : Walter de Gruyter, 1992: 53-60.
  • 3THOMPSON J G. Normal p - complements for finite groups [J].J Algebra, 1964(1) :43-60.
  • 4GORENSTEIN D.Finite Groups [M]. New York: Harper & Row, 1968:21-26.
  • 5ROBINSON D J S.A course in the Theory of Groups [M]. New York:Springer,1993:22-32.
  • 6HUPPERT B. Endliche Gruppen I [M]. Berlin - New York : Springer - Verlag, 1967 : 43 - 50.
  • 7WANG Y. Remarks on finite group admitting an automorphism of prime order [J].Areh Math(Basel), 1665,65(6): 471 -474.
  • 8Wielandt H. Eine verallgemeinerung der invarianten untergruppen[J]. Math Z, 1939,45 : 209-244.
  • 9Bartels D. Subnormality and invariant relations on conjugacy classes in finite groups[J]. Math Z, 1977,157:13- 17.
  • 10Lennox J C, Stonehewer S E. Subnormal subgroups of groups [M]. Oxford Mathematical Publications, Ox- ford: Clarenden Press,1987.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部