期刊文献+

基于改进KNN算法的动态手势识别研究 被引量:8

Research on Gesture Recognition Based on Improved KNN Algorithm
下载PDF
导出
摘要 手势识别是人机交互的一种方式,用于手势识别的传统K最邻近算法由于训练组数据量大影响了其识别效率,为此提出了一种新的手势特征提取方法,设计了一款基于改进K最邻近算法的手势识别俄罗斯方块游戏.该方法根据手势信号的特征量,只需记录特征量的符号作为训练组以及测试组来储存.实验表明,改进K最邻近算法在体感游戏中对手势识别的平均成功率较阈值判别法的手势识别成功率提高了10%左右. Gesture recognition as a way of human-computer interaction.In view of the problem that the traditional K-Nearest Neighbor(KNN)algorithm in gesture recognition affected the recognition efficiency due to the cumbersome training group data,a new gesture feature extraction method was proposed,and a Tetris game of gesture recognition with improved KNN algorithm was designed.According to the characteristic quantity of the gesture signal,only the symbol of the recorded characteristic quantity can be stored as the training group and the test group.The experiment shows that the average success rate of gesture recognition by improved KNN algorithm in somatosensory games is about 10%higher than that by threshold discrimination.
作者 陈嘉伟 韩晶 郝瑞玲 胡迪 CHEN Jia-wei;HAN Jing;HAO Rui-ling;HU Di(School of Mechatronics Engineering,North University of China,Taiyuan 030051,China;PLA Unit 32382,Beijing 100072,China)
出处 《中北大学学报(自然科学版)》 CAS 2020年第3期232-237,共6页 Journal of North University of China(Natural Science Edition)
基金 山西省重点研发计划项目资助项目(201903D121061) 山西省研究生教育创新项目基金资助项目(2019SY418) 中北大学研究生科技立项基金资助项目(20181505) 山西省应用基础研究计划(201901D111147) 山西省重点研发计划(201903D121061)。
关键词 人机交互 手势识别 K最邻近算法 特征提取 阈值判别法 human-computer interaction gesture recognition KNN algorithm feature extraction threshold test
  • 相关文献

参考文献8

二级参考文献65

  • 1徐德友.虚拟现实训练系统中基于手势的人机交互[J].系统仿真学报,2006,18(z2):386-389. 被引量:12
  • 2刘江省,姚英学,李建广,夏平均,刘国华.虚拟装配中基于数据手套的虚拟操作研究[J].系统仿真学报,2004,16(8):1744-1747. 被引量:23
  • 3王晓晔,王正欧.K-最近邻分类技术的改进算法[J].电子与信息学报,2005,27(3):487-491. 被引量:25
  • 4张晨曦,姚鸿勋,姜峰.基于多分辨率的多层分类器的手语识别方法[J].计算机科学,2005,32(4):94-96. 被引量:1
  • 5王国胤,Rough集理论与知识获取[M].西安:西安交通大学出版社,1999.
  • 6Hjaltason G R, Hanan S. Index-driven Similarity Search in Metric Spaces[J]. ACM Trans, on Database Systems, 2003, 28(4): 517-580.
  • 7Pawlak Z. Rough Sets[J]. International Journal of Computer and Information Sciences, 1982, 11 (3): 341-356.
  • 8HSU E,GENTRY S,POPOVIC J.Example-basedcontrol of human motion[C]∥Proceedings of the 2004ACM SIGGRAPH/Eurographics symposium on Computeranimation.Grenoble,France:Eurographics Associa-tion,2004:69-77.
  • 9LEE J,CHAI J,REITSMA P S,et al.Interactive con-trol of avatars animated with human motion data[C]∥Proceedings of the 29th annual conference on Computergraphics and interactive techniques.San Antonio,Tex-as:ACM,2002:491-500.
  • 10MAES P,DARRELL T,BLUMBERG B,et al.TheALIVE system:wireless full-body interaction with au-tonomous agents[J].ACM Multimedia Systems,1997,5:105-112.

共引文献126

同被引文献72

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部