期刊文献+

基于Retinex理论的图像去雾去噪算法 被引量:4

Image dehazing and detuning algorithm based on Retinex theory
下载PDF
导出
摘要 利用基于Retinex理论的去雾算法对图像进行去雾处理,图像会出现颜色失真,细节信息不明显等问题,为了更好地实现动态范围压缩和颜色恒定,提出了一种基于Retinex理论的图像去雾去噪算法。该方法大致可分为3部分:求取光照强度,增强图像细节和线性加权融合。首先利用MSR算法求取图像的光照分量和反射分量,然后利用拉普拉斯金字塔对反射分量进行处理,增强图像的细节部分。最后进行彩色校正重建清晰图像。通过与其它去雾算法进行性能对比,实验结果表明,该算法具有较高的可靠性和有效性,能高效地去雾并增强图像的边缘和细节部分,得到细节清晰的高质量图像。 The image is defogged by using the defogging algorithm based on the Retinex theory,there will be problems such as image color distortion and inconspicuous detail information.In order to achieve better dynamic range compression and color constant,an image de-fogging algorithm based on Retinix theory is proposed.The method can be roughly divided into three parts:obtaining light intensity,enhancing image detail and linear weighted fusion.Firstly,the MSR algorithm is used to obtain the illumination component and the reflection component of the image,and then the Laplacian pyramid is used to process the reflection component to enhance the detail part of the image.Finally,color correction is performed to reconstruct a clear image.Compared with other defogging algorithms,the experimental results show that the algorithm has high reliability and effectiveness.Specifically,the algorithm can effectively defog and enhance the edges and details of the image,and obtain high-quality images with clear details.
作者 郑敏 ZHENG Min(School of Computer Science,Xi'an Shiyou University,Xi'an 710065,China)
出处 《智能计算机与应用》 2020年第2期93-96,共4页 Intelligent Computer and Applications
关键词 图像增强 图像复原 图像去雾 RETINEX image enhancement image restoration image defogging Retinex
  • 相关文献

参考文献2

二级参考文献26

  • 1刘鹏,张岩,毛志刚.一种基于模糊函数的自适应平滑约束图像复原算法[J].中国图象图形学报,2005,10(9):1178-1183. 被引量:7
  • 2曹学光,易沫,汪雪林,彭思龙.小波域边缘保持规整化图像复原[J].中国图象图形学报,2006,11(2):224-229. 被引量:9
  • 3吴显金,王润生.基于边缘恢复和伪像消除的正则化图像复原[J].电子与信息学报,2006,28(4):577-581. 被引量:10
  • 4Schechner Y Y,Narasimhan S G,Nayar S K.Instant dehazing of images using polarization[C]//CVPR.Kauai:IEEE Computer Society,2011,1:325-332.
  • 5Shwartz S,Namer E,Schechner Y Y.Blind haze separation[C]//CVPR.New York:IEEE Computer Society,2006,2:1984-1991.
  • 6Narasimhan S G,Nayar S K.Chromatic framework for vision in bad weather[C]//CVPR.Hilton Head,Sc,USA:IEEE Computer Society,2000,1:598-605.
  • 7Nayar S K,Narasimhan S G.Vision in bad weather[C]//ICCV.Kerkyra,Corfa,Greece:IEEE Computer Society,1999,2:820-827.
  • 8Patti A J,Tekalp A M,Sezan M I.A new motion compensated reduced order model Kalman filter for spacevarying restoration of progressive and interlaced video[J].IEEE Transactions on Image Processing,1998,7(4):543-554.
  • 9Patti A J,Sezan M I,Tekalp A M.Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture timi[J].IEEE Transactions on Image Processing,1997,6(8):1064-1076.
  • 10Elad M,Feuer A.Super-resolution reconstruction of image sequences[J].IEEE Transactions Pattern Analysis and Machine Intelligence,1999,21(9):817-834.

共引文献2

同被引文献38

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部