期刊文献+

基于EKF的高低温模型修正SOC估算方法

Modified SOC estimation method for high and low temperature model based on EKF
下载PDF
导出
摘要 为了获得更加准确的电池荷电状态(SOC)估算,针对高低温环境因素对锂电池性能的影响,提出了一种基于扩展卡尔曼滤波(EKF)的高低温模型修正SOC估算方法。选用二阶RC等效电路模型,结合开路电压法、安时积分法以及改进的扩展卡尔曼滤波法建立算法模型。根据欧姆电阻对温度反应的差异性,在观测方程中引入偏差控制量。最后,基于Matlab仿真平台进行试验。结果表明,改进后的算法有效提高了SOC的估算精度,将相对误差控制在3.12%以下,比未改进前的模型精度降低了1.44%。 In order to obtain more accurate estimation of state of charge(SOC)of lithium batteries,a modified SOC estimation method based on extended Kalman filter(EKF)for high and low temperature environment is proposed.The second-order RC equivalent circuit model is selected,and the algorithm model is established by combining open-circuit voltage method,timeintegration method and the improved extended Kalman filter method.At the same time,according to the difference of ohmic resistance to temperature response,the deviation control quantity is introduced into the observation equation.Finally,the experiment is based on the Matlab simulation platform.The results show that the improved algorithm effectively improves the estimation accuracy of SOC,and the relative error is controlled below 3.12%,which is 1.44%lower than that of the original model.
作者 唐淳淳 余粟 王盟 TANG Chunchun;YU Su;WANG Meng(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Engineering Training Center,Shanghai University of Engineering Science,Shanghai 201620,China;School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《智能计算机与应用》 2020年第2期180-183,共4页 Intelligent Computer and Applications
关键词 电池荷电状态 扩展卡尔曼滤波 高低温模型 偏差控制量 MATLAB仿真 state of charge extended Kalman filter high and low temperature model deviation control Matlab simulation
  • 相关文献

参考文献5

二级参考文献37

  • 1戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:44
  • 2姜久春.电池管理系统的概况和发展趋势[J].新材料产业,2007(8):40-43. 被引量:38
  • 3李顶根,李竟成,李建林.电动汽车锂离子电池能量管理系统研究[J].仪器仪表学报,2007,28(8):1522-1527. 被引量:29
  • 4BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general ener-gy balance for battery systems [J]. Journal of the ElectrochemicalSociety, 1985, 132(1): 5-12.
  • 5SMITH K, WANG C Y. Power and thermal characterization of alithium-ion battery pack for hybrid-electric vehicles [J]. Journal ofPower Sources, 2006, 160(1): 662-673.
  • 6FORGEZ C,VINH D D, FRIEDRICH G, et al. Thermal modelingof a cylindrical LiFePOVgraphite lithium-ion battery [J]. Journal ofPower Sources, 2010, 195(9): 2961-2968.
  • 7PESARAN A A. Battery thermal management in EV and HE Vs: is-sues and solutions[J]. Battery Man, 2001, 43(5): 34-49.
  • 8RAO Z, WANG S. A review of power battery thermal energy man-agement [J]. Renewable and Sustainable Energy Reviews, 2011,15(9): 4554-4571.
  • 9ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behaviorof small lithium-ion battery during rapid charge and discharge cy-cles[J]. Journal of Power Sources, 2006,158(1): 535-542.
  • 10INEEL. FreedomCAR battery test manual for power assist hybridelectric vehicles[M]. US: Idaho National Engineering and Environ-mental Laboratory, 2003: 39.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部