期刊文献+

基于复合多尺度排列熵与FO-SVM的滚动轴承故障诊断方法 被引量:11

Fault Diagnosis for Rolling Bearings Based on Composite Multi-scale Permutation Entropy and FO-SVM
下载PDF
导出
摘要 MPE算法中不充分的时间序列粗粒化过程会造成原始振动信号在时间序列中信息的缺失。为优化这种不成熟的粗粒化过程,相关学者创新地采用复合粗粒化的思想,提出了复合多尺度排列熵(CMPE)。为了实现滚动轴承的智能故障诊断,提出一种基于CMPE与萤火虫优化支持向量机(FO-SVM)的滚动轴承智能故障诊断方法。首先使用CMPE表征滚动轴承的原始故障信息,然后构建FO-SVM多故障分类器,实现对滚动轴承故障类型和程度的智能识别。通过仿真信号分析验证了CMPE相对于MPE在信号稳定性方面的优越性;实验数据分析结果表明:相比于基于MPE与FO-SVM的滚动轴承故障诊断方法,所提故障诊断方法不仅能够准确诊断滚动轴承的故障类型和程度,而且识别率达到了100%。 In the MPE algorithm,the insufficient process of course-grained time series can cause the loss of the original vibration signal in the time series information.In order to optimize this immature of coarse-grained process,the relevant scholars have innovatively adopted the idea of composite coarse granulation and put forward composite multi-scale permutation entropy(CMPE).In this paper,an intelligent fault diagnosis method for rolling bearings based on CMPE and firefly optimized support vector machine(FO-SVM)is proposed.Firstly,the CMPE is used to extract the original fault information of the rolling bearing.Then the FO-SVM multi-fault classifier is constructed to realize the intelligent identification of the fault types and degrees of the rolling bearing.The superiority of CMPE relative to MPE in signal stability is verified by signal simulation analysis.The experimental data shows that compared with the fault diagnosis method based on MPE and FOSVM,the proposed fault diagnosis method can accurately diagnose the types and degrees of failure of the rolling bearing,and the recognition accuracy is up to 100%.
作者 董治麟 郑近德 潘海洋 刘庆运 丁克勤 DONG Zhilin;ZHENG Jinde;PAN Haiyang;LIU Qingyun;DING Keqin(School of Mechanical Engineering,Anhui University of Technology,Maanshan 243032,Anhui,China;Engineering Research Center of Hydraulic Vibration and Control,State Ministry of Education,Maanshan 243032,Anhui,China;China Special Equipment Inspection and Research Institute,Beijing 100029,China)
出处 《噪声与振动控制》 CSCD 2020年第2期102-108,共7页 Noise and Vibration Control
基金 国家重点研发计划资助项目(2017YFC0805100) 国家自然科学基金资助项目(51505002) 安徽省高校自然科学研究重点项目资助。
关键词 振动与波 多尺度排列熵 复合多尺度排列熵 滚动轴承 故障诊断 萤火虫优化支持向量机 vibration and wave multi-scale permutation entropy composite multi-scale permutation entropy(CMPE) rolling bearing fault diagnosis firefly optimization support vector machine(FO-SVM)
  • 相关文献

参考文献10

二级参考文献117

共引文献155

同被引文献154

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部