摘要
对于电动汽车内置式永磁同步电机(IPMSM)驱动系统,转子位置的精度在高性能无传感器矢量控制中起到极其重要的作用。当电机在运行过程中受到外界干扰和系统状态突变时,传统的容积卡尔曼滤波(CKF)算法的动态响应较差,导致对转子位置的跟踪能力下降,估计精度降低,甚至引起滤波器发散。因此,本文采用强跟踪容积卡尔曼滤波(STCKF)算法,在传统的容积卡尔曼滤波的基础上引入了强跟踪滤波器(STF),进而动态改善容积卡尔曼滤波算法的估计精度和跟踪能力。在Matlab/Simulink中对改进的转子位置估计算法进行仿真分析,并且进行测功机台架实验。实验结果表明:强跟踪容积卡尔曼滤波算法响应快,跟踪能力强,估计精度相比于传统的容积卡尔曼滤波算法提高19%。
For the interior permanent magnet synchronous motor(IPMSM)drive system of electric vehicles,the accuracy of the rotor position plays an extremely important role in high performance sensorless vector control.When the permanent magnet synchronous motor is disturbed and the system state is abrupted during operation,the dynamic response of the conventional cubature Kalman filter(CKF)algorithm is poor.Then tracking ability and estimation accuracy for the rotor position are reduced,and the filter is even diverged.Therefore,this paper adopted strong tracking cubature Kalman filter(STCKF)algorithm.The improved algorithm introduced a strong tracking filter(STF)based on the traditional cubature Kalman filter,then dynamically improved the estimation accuracy and tracking ability of the cubature Kalman filter algorithm.The improved rotor position estimation algorithm was simulated and analyzed in Matlab/Simulink,and the dynamometer bench experiment was carried out.The experimental results show that the strong tracking cubature Kalman filter algorithm has fast response and strong tracking ability in medium and high speed,and the estimation accuracy is 19%higher than the traditional cubature Kalman filter algorithm.
作者
王琳
李军伟
马彦
阚辉玉
孙宾宾
高松
王冬
WANG Lin;LI Junwei;MA Yan;KAN Huiyu;SUN Binbin;GAO Song;WANG Dong(School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo Shandong 255000, China;New Science and Technology Research Institute, Weichai Power Co. , Ltd. , Weifang Shandong 261000, China;Beijing Qianqin Technology Co. , Ltd. , Beijing 100190, China)
出处
《微电机》
北大核心
2020年第3期61-65,共5页
Micromotors
基金
国家自然科学基金(51805301)
国家重点研发计划项目(2016YFD0701101)。
关键词
电动汽车
内置式永磁同步驱动电机
转子位置估计
强跟踪容积卡尔曼滤波
electric vehicle
interior permanent magnet synchronous motor
rotor position estimation
strong tracking cubature Kalman filter