期刊文献+

基于改进萤火虫优化算法的视频监控图像增强 被引量:1

Surveillance Video Images Enhancement Based on Improved Glowworm Swarm Optimization Algorithm
下载PDF
导出
摘要 针对视频图像增强问题中连续多帧图像序列中的像素相关性,建立了一种有效的视频图像增强模型,将视频连续图像增强问题转化为从原始低质量图像像素序列到高质量增强图像像素序列的寻优问题。基本萤火虫(GSO)算法具有容易陷入极值振荡和局部最优的缺陷,为了解决这个问题,在位置更新策略中引入了全局最优个体影响因子与局部最优个体影响因子,同时为了保证迭代过程中荧光素更新的多样性,对萤火虫荧光素的挥发及增益系数进行改进,提出了改进萤火虫(IGSO)算法。结合视频图像增强问题特性,重新定义了算法的群体的输入、萤火虫的荧光素和位置更新运动方程,设定了优化目标函数准则。最后典型的道路和室内监控视频图像增强实例验证了所提出的模型和算法的可行性。 Aiming at the pixel correlation of continuous multi frame image sequences in video image enhancement,an effective video image enhancement model is established to transform the video continuous image enhancement problem into optimization problem from pixel sequence of low quality image to pixel sequence of high quality image.The basic glowworm swarm optimization(GSO)algorithm is easy to fall into the extreme value oscillation and local optimum.In order to resolve this problem,the global optimal individual impact factor and the local optimal individual impact factor are introduced in the location update strategy.At the same time,in order to ensure the diversity of fluorescein updates in the iteration process,the volatilization and gain coefficient of firefly fluorescein are improved,and an improved glowworm swarm optimization(IGSO)algorithm is proposed.Combined with the characteristics of video image enhancement,the algorithm’s swarm input,firefly’s luciferase and location update equation are redefined,and the optimization objective function criterion is set.A typical road surveillance video super-resolution reconstruction example verifies the feasibility of the proposed model and algorithm.
作者 俞文静 刘航 李梓瑞 李基林 YU Wen-jing;LIU Hang;LI Zi-rui;LI Ji-lin(South China Institute of Software Engineering,Guangzhou 510990,China)
出处 《计算机技术与发展》 2020年第4期195-199,共5页 Computer Technology and Development
基金 2019年国家级大学生创新创业训练计划项目(DCXM2019017) 2018年广东省普通高校重点科研项目(2018KTSCX341) 2017年外经外贸发展专项资金(促进服务贸易创新发展项目)(2160699-87)子课题(CJ201811) 2018年广州大学华软软件学院科学研究项目(ky201804)。
关键词 图像/视频 视频图像增强 萤火虫算法 优化算法 image/video video image enhancement glowworm swarm optimization algorithm optimization algorithm
  • 相关文献

参考文献4

二级参考文献45

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2LIU C, SUN D. A Bayesian approach to adaptive video super resolu- tion[ C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. [ S. 1. ] :IEEE Press,2011:209-216.
  • 3FREEDMAN G, FATTAL R. Image and video upscaling from local self-examples [ J] ACM Trans on Graph cs,2011,30 (2) : 12-22.
  • 4JI Hui, LIU C, SHEN Z, et al. Robust video denoising using low rank matrix completion [ C ]//Proc of IEEE Conference on Computer Vision and Pattel~a Recognition. [ S. 1. ] : IEEE Press,2010 : 1791-1798.
  • 5CANDleS E J, LI X, MA Y,et al. Robust principal component analy- sis? [J].doumalofthoAGM,2011,58(3):11.
  • 6SHT Feng, CHENG Jian, WANG Li, et al. Low-rank total variation for image super-resolution [ C ]//Proe of Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2013,155-162.
  • 7LINGALA S G, HU Yue, DIBELLA E,et al. Accelerated dynamic MRI exploiting sparsity and low-rank structure : k-t SLR [ J ]. I EEE Trans on Medical Imaging,2011,30(5 ) : 1042-1054.
  • 8AFONSO M V, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization [ J ]. I EEE Trans on Image Processing,2010,19 (9) :2345-2356.
  • 9YANG Jun-feng, ZHANG Yin, YIN We-tad. A fast TVL1-L2 minimi- zation algorithm for signal reconstruction from partial Fourier data[ J]. IEEE Journal of Selected Topics in Signal Processing,2009,4: 288- 297.
  • 10TAKEDA H, MILANFAR P, PROTTER M, et al. Super-resolution without explicit subpixel motion estimation [ J]. IEEE Trans on Image Processing ,2009,3 8 (9) : 1958-1975.

共引文献30

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部