期刊文献+

发动机排气歧管模态分析 被引量:1

Modal Analysis of Engine Exhaust Manifold
下载PDF
导出
摘要 振动疲劳能够引起排气歧管的失效,发动机和车身的激励频率与排气歧管的固有频率相近,会产生共振,这种共振会增大排气歧管的振动幅度,导致其加速断裂破坏;模态分析作为研究结构振动特性的常用手段,其分析的核心内容就是确定固有频率、阻尼比及振型等模态参数;本文针对排气歧管进行模态分析的目的是为了获得排气歧管的固有频率,进而能够确定引起疲劳破坏的最大激励频率,避免发动机排气歧管共振情况的发生。 Vibration fatigue can cause the exhaust manifold to fail.The excitation frequency of the engine and the body is close to the natural frequency of the exhaust manifold,and resonance will occur.This resonance will increase the vibration amplitude of the exhaust manifold and cause its accelerated fracture and damage.Modal analysis is a commonly used method to study the vibration characteristics of structures.The core of its analysis is to determine the modal parameters such as natural frequency,damping ratio and mode shape.The purpose of the modal analysis of the exhaust manifold in this paper is to obtain the natural frequency of the exhaust manifold,and then to determine the maximum excitation frequency that causes fatigue damage,to avoid the occurrence of engine exhaust manifold resonance.
作者 程捷敏 Jie-min(School of Mechanical and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《内燃机与配件》 2020年第7期68-69,共2页 Internal Combustion Engine & Parts
关键词 排气歧管 疲劳 模态分析 有限元分析 exhaust manifold fatigue modal analysis finite element analysis
  • 相关文献

参考文献2

二级参考文献23

  • 1Pehan S,Hellen T K, Flasker J, et al.Numerical methods for determining stress intensity factors vs crack depth in gear tooth roots [J].International Journal of Fatigue, 1997,19(10) : 677-685.
  • 2Reifsnider K,Case S,Duthoit J.The mechanics of composite strength evolution [ J ].Composites Science and Technology, 2000,60 ( 12-13 ) : 2539-2546.
  • 3Arola D,Williams C L.Estimating the fatigue stress concentration factor of machined surfaces [ J].Intemational Journal of Fatigue,2002,24 (9) : 923-930.
  • 4Nando T, Gaetano S, Carlos G. Simultaneous considerations of length and boundary conditions on theoretical stress concentration factors [J]. International Journal of Fatigue, 2003,25 (4): 353-355.
  • 5Fujimoto Takashi, Cao Feng-ying, Nisitani, Hironobu.Approximate formula for estimating stress concentration factors for V-notched cylindrical specimens [J ]. Key Engineering Materials, 2003,251 (252) : 261-266.
  • 6Papadrakakis M,Papadopoulos V.Computationally efficient method tot the limit elasto plastic analysis of space frames [J].Comput. Mech, 1995,16(2): 132-141.
  • 7Chen T P, Chen H, Liu R W. Approximation eapability in C ( (R)over-bar (n)) by multilayer feedforward networks and related problems [J].IEEE Transactions on Neural Networks, 1995,6( 1 ) : 25-30.
  • 8Zhang Y M,Chen S H,Liu Q L,et al.Stochastie perturbation finite elements [J ]. Computers & Structures, 1996,59(3) : 425-429.
  • 9Vetter W J.Matrix calculus operations and Taylor expansions [J].SLAM Review, 1973,15(2): 352-369.
  • 10黄炎编局部应力及其应用[M].北京:机械工业出版社,1986.

共引文献14

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部