期刊文献+

热噪声试验中平板温度边界层对近壁面声压分布影响数值分析 被引量:1

Numerical simulation of temperature boundary layer of a flat panel on the near-wall sound pressure distributions in thermal-acoustic test
下载PDF
导出
摘要 为了研究高温平板隔热试件附近温度边界层对近壁面声场的影响,进而对地面模拟试验条件进行适当修正,文章首先构建了热噪声试验中声波穿过温度边界层的简化模型,运用边界层积分法得出常温气体掠过高温壁面时温度边界层内的温度分布;在此基础上,采用有限差分法求解平面波入射非均匀介质时的散射问题,得出高温平板近壁面声压分布。结果表明,温度边界层使近壁面声场发生衰减,在入射声波频率为10 000 Hz时比无温度边界层情况下声压级减小约3 dB,使实际声谱偏离试验条件。 In this paper, a simplified model is built for simulating the sound wave skimming over a hightemperature insulation specimen in the thermal-acoustic testing for studying the influence of the temperature boundary layer on the sound field near the wall. The integration method is used to obtain the temperature distributions in the thermal boundary layer when the room temperature gas sweeps past the high temperature wall. Based on that, the finite difference method is used to solve the scatting problem of the plane wave propagation in an inhomogeneous medium, and the sound pressure distribution near the wall of the hightemperature flat plate is calculated. It is shown that the temperature boundary layer attenuates the sound field near the wall. When the frequency is 10 000 Hz, the sound pressure level in the near wall region is reduced by about3 dB compared with the case without the temperature boundary layer. The result may provide some reference for adjusting or correcting the real test parameters.
作者 陈雅曦 王明杰 齐江龙 CHEN Yaxi;WANG Mingjie;QI Jianglong(Beijing Institute of Structure and Environment Engineering,Beijing 100076,China)
出处 《航天器环境工程》 2020年第2期120-124,共5页 Spacecraft Environment Engineering
关键词 热噪声试验 温度边界层 非均匀介质 声压分布 有限差分法 thermal-acoustic testing thermal boundary layer inhomogeneous medium sound pressure distributions finite difference method
  • 相关文献

参考文献2

二级参考文献39

  • 1Klimov A I , Koblov A N , Mishin G I, etal. Shock wave propagation in a glow discharge [J]. SovPhys Tech Phys, 1982,8(1): 240-241.
  • 2Mishin G I, Serov Yu L, Yavor I P. Flow around a sphere moving supersonically in a gas discharge plasma [J].Soviet Technical Physics Letters, 1991,17(6): 413-416.
  • 3Ganguly B N, Bletzinger P, Garscadden A. Shock wave damping and dispersion in nonequilibrium low pressure Argon Plasmas [J].Physics Letters A, 1997,230(4) : 218-222.
  • 4Soukhomlinov V S, Kolosov V Y, Sheverev V A, et al. Acoustic dispersion in glow discharge plasma: A phenomenological analysis [J]. Physics of Fluids, 2002,14(1) : 427-429.
  • 5Vadim P S, Tindaro I, Otugen M V, et al. Measurement of gas temperature and convection velocity profiles in a dc atmospheric glow discharge[J]. Applied Physics, 2007,102(12): 102-107.
  • 6Roth J R, Sherman D M, Wilkinson S P. Electrohydrodynamic flow control with a glow-discharge surface plasma [J]. AIAA Journal, 2000,38(7) : 1166-1172.
  • 7Soukhomlinov V S V, Tarau C O V S V, Raman G. Acoustic wave control using glow discharge plasma [C]//1^st Flow Control Conference. St. Louis, Missouri: AIAA, 2002: 2002-2731.
  • 8Ionikh Y Z, Chernysheva N V, Meshchanov A V, etal. Direct evidence for thermal mechanism of plasma influence on shock wave propagation [J]. Physics Letters A, 1999,259: 387-392.
  • 9Vladimir S, Valery A S , Calin T. Reflection of sound by glow discharge plasma [J].Applied Physics, 2006,39: 3653-3658.
  • 10Tarau C, Otugen M V. Propagation of acoustic waves through regions of non-uniform temperature [J]. Aeroacoutics, 2002,1(2) : 165-181.

共引文献34

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部