期刊文献+

基于知识图谱和协同过滤的电影推荐算法研究 被引量:17

A movie recommendation algorithm based on knowledge graph and collaborative filtering
下载PDF
导出
摘要 针对协同过滤算法在推荐电影过程中只能考虑电影外部评论而不能考虑电影内部的相似度关系,提出构建知识图谱辅助计算电影内部相似度。已有的电影数据可能是不完整的,因此采用知识图谱推理补全缺失的电影知识。基于TransE模型的知识图谱无法有效描述电影间的片名、演员、导演等复杂的多关系。首先采用改进的TransHR模型表示出电影信息之间的多关系,提升关系表示的准确率;然后通过用户评分矩阵计算电影间相似度;最后将2种相似度融合并应用于矩阵分解的推荐技术中。对比实验结果表明,该算法在召回率、准确率、平均绝对误差MAE等指标上都有所提升。 Aiming at the problem that the collaborative filtering recommendation algorithm can only consider the external reviews of movies and not the similarity relationships within movies during the process of recommending movies, the paper proposes to construct a knowledge graph to help calculate the internal similarity of movies. Existing movie data may be incomplete, so knowledge graph reasoning is used to complement missing movie knowledge. The knowledge graph based on TransE model cannot effectively describe the complex multi-relationship among movie titles, actors and directors. Firstly, the improved TransHR model can express the multi-relationship between movie information and improve the accuracy of relationship representation. Then, the similarity between movies is calculated by the user rating matrix. Finally, the two similarities are merged and applied to the recommended technique of matrix decomposition. The experimental results show that the algorithm improves Recall, Precision, and MAE.
作者 袁泉 成振华 江洋 YUAN Quan;CHENG Zhen-hua;JIANG Yang(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065;Research Center of New Telecommunication Technology Applications,Chongqing University of Posts and Telecommunications,Chongqing 400065;Chongqing Information Technology Designing Co.,Ltd.,Chongqing 401121,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第4期714-721,共8页 Computer Engineering & Science
关键词 协同过滤算法 知识图谱 表示学习 混合推荐 collaborative filtering algorithm knowledge graph express learning mixed recommendation
  • 相关文献

参考文献2

二级参考文献18

  • 1JIANG S, HONG W X. A vertical news recommendation system: CCNS——an example from Chinese campus news reading system[C]//ICCSE 2014: Proceedings of the 2014 9th International Conference on Computer Science & Education. Piscataway, NJ: IEEE, 2014: 1105-1114.
  • 2DAS A S, DATAR M, GARG A, et al. Google news personalization: scalable online collaborative filtering[C]//WWW '07: Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 271-280.
  • 3GARCIN F, ZHOU K, FALTINGS B, et al. Personalized news recommendation based on collaborative filtering[C]//WI-IAT '12: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology. Washington, DC: IEEE Computer Society, 2012, 1: 437-441.
  • 4WU X D, XIE F, WU G Q, et al. Personalized news filtering and summarization on the Web[C]//ICTAI 2011: Proceedings of the 2011 23rd IEEE International Conference on Tools with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2011: 414-421.
  • 5LI L, CHU W, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation[C]//WWW '10: Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 661-670.
  • 6ADNAN M N M, CHOWDURY M R, TAZ I, et al. Content based news recommendation system based on fuzzy logic[C]//ICIEV 2014: Proceedings of the 2014 International Conference on Informatics, Electronics & Vision. Washington, DC: IEEE Computer Society, 2014: 1-6.
  • 7LIU J, DOLAN P, PEDERSEN E R. Personalized news recommendation based on click behavior[C]//IUI '10: Proceedings of the 15th International Conference on Intelligent User Interfaces. New York: ACM, 2010: 31-40.
  • 8JONNALAGEDDA N, GAUCH S. Personalized news recommendation using Twitter[C]//WI-IAT 2013: Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies. Washington, DC: IEEE Computer Society, 2013, 3: 21-25.
  • 9LEE W-J, OH K-J, LIM C-G, et al. User profile extraction from Twitter for personalized news recommendation[C]//ICACT 2014: Proceedings of the 2014 16th International Conference on Advanced Communication Technology. Washington, DC: IEEE Computer Society, 2014: 779-783.
  • 10ZUO Y C, YOU F, WANG J M, et al. User modeling driven news filtering algorithm for microblog service in China[C]//ICIS '12: Proceedings of the 2012 IEEE/ACIS 11th International Conference on Computer and Information Science. Washington, DC: IEEE Computer Society, 2012: 393-399.

共引文献80

同被引文献182

引证文献17

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部