期刊文献+

基于主题模型的胸部X光片诊断报告异常检测方法 被引量:3

An abnormal chest X-ray diagnostic report detection method based on topic model
下载PDF
导出
摘要 胸部X光片是患者胸部检查的优先选择,对患者的诊断治疗起着重要的作用。医生依据自身的经验和习惯书写胸部X光片诊断报告,由于一些主观或者客观的原因,会开具一些影像描述与诊断结论不相符的异常诊断报告,因此对诊断报告进行异常检测有着重要的研究意义。胸片诊断报告未登录词多、数据高维稀疏,缺乏大量有效标注,传统方法检测异常胸片诊断报告效果不佳,为此,提出了一种基于主题模型的胸部X光片诊断报告异常检测方法。首先用双向LSTM-CRF模型结合诊断报告中的字符级特征,获取特定的医疗术语特征,解决诊断报告中未登录词多,描述自由的问题。然后依据领域知识和模板将诊断报告进行有效的特征扩展,缓解数据稀疏问题。最后用LDA模型判断诊断报告中影像描述与诊断结论特征是否匹配,检测出异常胸片诊断报告。实验结果表明,在阈值为2的情况下,异常检测的准确率为92.82%,召回率为69.54%,检测性能优于传统方法的。 Chest X ray is the preferred choice for patients’ chest examinations and plays an important role in the diagnosis and treatment of patients. Doctors write chest X-ray diagnostic reports based on their own experience and habits. For some subjective or objective reasons, they will issue some abnormal diagnostic reports that do not match the diagnostic conclusions. Therefore, it is of great significance to carry out abnormal detection of the diagnostic reports. Chest X-ray diagnostic reports have many unknown words and sparse high-dimensional data and lack of a lot of effective labeling. Traditional methods are ineffective in detecting abnormal chest X-ray diagnostic reports. Therefore, this paper proposes an abnormal chest X-ray diagnostic report detection method based on topic model. Firstly, the bidirectional LSTM-CRF model is used to combine the character-level features in the chest radiograph diagnosis reports to obtain the specific medical terminology features, so as to solve the problem that the diagnosis reports have many unknown words and are described freely. Secondly, based on domain knowledge and template, the chest X-ray diagnosis reports are extended effectively to alleviate the problem of data sparsity. Finally, the LDA model is used to determine whether the image description in the diagnosis reports match the characteristics of the diagnosis conclusion, so as to detect the abnormal chest X-ray diagnosis reports. Experiments show that the accuracy of abnormal detection is 92.82 and the recall rate is 69.54 when the threshold is 2. The proposal has higher abnormal detection performance than the traditional methods.
作者 尤诚诚 冯旭鹏 刘利军 黄青松 YOU Cheng-cheng;FENG Xu-peng;LIU Li-jun;HUANG Qing-song(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;Information Technology Center,Kunming University of Science and Technology,Kunming 650500;Yunnan Provincial Key Laboratory of Computer Technology Applications,Kunming 650500,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第4期741-748,共8页 Computer Engineering & Science
基金 国家自然科学基金(81860318,81560296)。
关键词 诊断报告 长短期记忆神经网络 主题模型 异常检测 diagnostic report long short-term memory neural network topic model abnormal detection
  • 相关文献

参考文献5

二级参考文献84

  • 1Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990.
  • 2Hofmann T. Probabilistic latent semantic indexing//Proceedings of the 22nd Annual International SIGIR Conference. New York: ACM Press, 1999:50-57.
  • 3Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 4Griffiths T L, Steyvers M. Finding scientific topics//Proceedings of the National Academy of Sciences, 2004, 101: 5228 5235.
  • 5Steyvers M, Gritfiths T. Probabilistic topic models. Latent Semantic Analysis= A Road to Meaning. Laurence Erlbaum, 2006.
  • 6Teh Y W, Jordan M I, Beal M J, Blei D M. Hierarchical dirichlet processes. Technical Report 653. UC Berkeley Statistics, 2004.
  • 7Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, B39(1): 1-38.
  • 8Bishop C M. Pattern Recognition and Machine Learning. New York, USA: Springer, 2006.
  • 9Roweis S. EM algorithms for PCA and SPCA//Advances in Neural Information Processing Systems. Cambridge, MA, USA: The MIT Press, 1998, 10.
  • 10Hofmann T. Probabilistic latent semantic analysis//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden, 1999:289- 296.

共引文献317

同被引文献38

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部