期刊文献+

Ag/Ag3PO4等离子体共振光催化剂的制备及其在可见光下的催化性能 被引量:1

Ag/Ag3PO4 plasmonic photocatalyst preparation and photooxidation properties under visible light
下载PDF
导出
摘要 以Na2HPO4和AgNO3为原料,通过简单的离子交换法合成Ag3PO4,将合成的Ag3PO4悬浮在亚甲基蓝溶液中,用500 W的氙灯光照,通过光诱导方法制备Ag/Ag3PO4等离子体共振复合光催化剂,以亚甲基蓝的光催化降解来评价其催化性能。利用XRD、XPS、SEM、UV-Vis DRS对催化剂进行表征,结果表明,在亚甲基蓝溶液中的前2小时,Ag3PO4表面的Ag0量随光照时间增长而增加,当Ag0的含量达到14%后基本保持不变。光催化降解亚甲基蓝实验表明Ag/Ag3PO4体系具有高效的催化性能和良好的稳定性;对Ag/Ag3PO4体系的光催化机理进行了探讨,可见光区的高吸收归因于沉积在Ag3PO4上纳米银的等离子共振效应,同时银的加入使光生电子和光生空穴有效的分离,Ag/Ag3PO4体系简易的制备方法和高效稳定的催化性能可以用来在太阳光下降解有机污染物。 With Na2HPO4 and AgNO3 as raw materials,Ag3PO4 powder samples were prepared by the simple ion-exchange method.The obtained Ag3PO4 is dispersed into a solution of MB dye and irradiated with a 500W Xe lamp,Herein we utilize it to prepare a new type Ag/Ag3PO4 plasmonic photocatalyst by light-Induced from Ag3PO4,that decomposition methylene blue to evaluate their catalytic properties.As-prepared photocatalyst is characterized by XRD、XPS、UV-Vis DRS and SEM.The results show that the amount of Ag0 increased with the growth of irradiation time in 2 hours.then the content of Ag0 remain unchanged after 14%.Photocatalytic degradation of methylene blue show that Ag/Ag3PO4 system has high catalytic performance and good stability.And Ag/Ag3PO4 system photocatalytic mechanism is discussed,The high absorption of Ag/Ag3PO4 in the visible region is attributed to the plasmon resonance of silver nanoparticles deposited on the Ag3PO4 particles.While silver added to make the separation of electron and hole effective.Therefore,the facile preparation and favorable performance of Ag/Ag3PO4 make it available to remove organic pollutants under sunlight.
作者 彭海亮 PENG Hai-liang(Guangxi Grain&Oil Quality Supervision and Inspection Center,Nanning 530031,China)
出处 《化学研究与应用》 CAS CSCD 北大核心 2020年第4期615-621,共7页 Chemical Research and Application
关键词 光催化 Ag3PO4 等离子共振 photocatalyst Ag3PO4 plasmon resonance
  • 相关文献

参考文献6

二级参考文献70

  • 1仲维卓,刘光照,施尔畏,华素坤,唐鼎元,赵庆兰.在热液条件下晶体的生长基元与晶体形成机理[J].中国科学(B辑),1994,24(4):349-355. 被引量:61
  • 2乔军,孟庆龄,贾桂珍.运用OD值法进行细菌计数的研究[J].中国家禽,1996,18(4):26-27. 被引量:37
  • 3HOFFMANN M R, MARTIN S T, CHOI W, BAHNEMANN D W. Environmental applications of semiconductor photocatalysis [J], Chemical Reviews, 1995, 95( 1): 69-96.
  • 4SCHWARZENBACH R P, EGL1 T, HOFSTETTER T B, von GUNTEN U, WEHRLI B. Global water pollution and human health [J]. Annual Review of Environment and Resources, 2010, 35:109-136.
  • 5RIFE R, THOMAS T, NORBERG D, FOURNIER R, RINKER F, BONOMO M. Chemical demilitarization: Disposing of the most hazardous wastes [J]. Environmental Progress, 1989, 8(3): 167-175.
  • 6TONG H, OUYANG S, BI Y, UMEZAWA N, OSHIKIRI M, YE J. Nano-photocatalytic materials: Possibilities and challenges [J], Advanced Materials, 2012, 24(2): 229-251.
  • 7FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
  • 8FOX M A, DULAY M T. Heterogeneous photocatalysis [J], Chemical Reviews, 1993, 93(1): 341-357.
  • 9LEGR1NI O, OLIVEROS E, BRAUN A. Photochemical processes for water treatment [J], Chemical Reviews, 1993,93(2): 671-698.
  • 10RAVELLI D, DONDI D, FAGNONI M, ALBINI A. Photocatalysis— A multi-faceted concept for green chemistry [J], Chemical SocietyReviews, 2009, 38(7): 1999-2011.

共引文献25

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部