摘要
针对很多测站不能提供实测气象数据的情况,本文对两种高精度的GPT系列经验模型进行验证。通过对两种模型获得的经验气象数据及对计算可降水汽非常重要的ZHD的精度进行分析,得出如下结论:GPT2w模型的精度要高于GPT2模型,且在无实测气象数据的情况下可以使用GPT2w模型来进行GNSS水汽反演。
In view of the fact that many stations cannot provide measured meteorological data,this paper verifies two high-precision GPT series empirical models. The empirical meteorological data obtained from the two models and the accuracy of the ZHD,which is important for calculating the water vapor,are analyzed. It is concluded that the accuracy of the GPT2w model is higher than that of the GPT2 model,and the GPT2w model can be used for GNSS water vapor inversion without the measured meteorological data.
作者
武可强
王建强
WU Keqiang;WANG Jianqiang(Faculty of Geomatics,East China Institute of Technology,Nanchang 330013,China)
出处
《测绘与空间地理信息》
2020年第3期76-78,共3页
Geomatics & Spatial Information Technology