期刊文献+

一种改进的区间时变时滞系统稳定性准则 被引量:2

An Improve Stability Criterion for Systems with Interval Time-varying Delay
下载PDF
导出
摘要 研究区间时变时滞系统的稳定性问题。首先,通过引入一个区间调节参数,将系统时滞区间分解为两部分之和。其次,在两个子区间的基础上构造一个包含更多时滞信息和三重积分项的新Lyapunov-Krasovskii (L-K)泛函。在处理来自L-K泛函求导过程中产生的积分交叉项时,将时滞分属于各子区间的情况作为一个整体来研究。然后,基于Lyapunov稳定性理论,以线性矩阵不等式的形式给出一个新的稳定性准则。最后,通过两个数例证明所得稳定性准则的有效性。 The problem of stability for systems with interval time-varying delay is concerned in this paper. Firstly, the delay interval of systems is decomposed into two sub-intervals by introducing an interval adjusting parameter. Secondly, on the basis of each sub-interval, a new Lyapunov-Krasovskii(L-K) functional, which includes more information of delay and some new triple-integral terms, is constructed. In the process of dealing with the integral cross terms from the derivation of L-K functional, the case of time-varying delay falling, respectively, into each sub-interval are lumped into an unit to study. Thirdly, based on Lyapunov stability theory, a new delay-dependent stability criterion is proposed in the form of linear matrix inequalities. Finally, the effectiveness of the proposed stability criterion is demonstrated via two examples.
作者 尹宗明 张宁 雷蔓 仇磊 YIN Zong-ming;ZHANG Ning;LEI Man;QIU Lei(School of Mechanical Engineering,Guizhou University of Engineering Science,Guizhou 551700,China)
出处 《控制工程》 CSCD 北大核心 2020年第3期462-468,共7页 Control Engineering of China
基金 贵州省教育厅科技合作计划项目(黔科合LH字[2016]7063号) 贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]228).
关键词 稳定性准则 时滞分解 区间时变时滞 线性矩阵不等式 Stability criterion delay decomposition interval time-varying delay linear matrix inequalities
  • 相关文献

参考文献6

二级参考文献70

  • 1何勇,吴敏.多时变时滞系统的鲁棒稳定及有界实引理的时滞相关条件[J].控制理论与应用,2004,21(5):735-741. 被引量:12
  • 2SUN Jian, LIU Guo-ping, CHEN Jie, REES D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays [J]. Automatica, 2010, 46(2): 466-470.
  • 3HIEN L V, HA Q P, PHAT V N. Stability and stabilization of switched linear dynamic systems with time delay and uncertainties [J]. Applied Mathematics and Computation, 2009, 210(1): 223-231.
  • 4ZHANG Xian-ming, HAN Qing-long. A delay decomposition approach to delay-dependent stability for linear systems with time-varying delays [J]. Journal of Robust and Nonlinear Control,2009, 19(7): 1922-1930.
  • 5TAKAG1 T, SUGENO M, Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15 (1): 116-132.
  • 6CAO Y.Y., FRANK P.M., Analysis and synthesis of nonlinear time-delay system via fuzzy control approach [J]. IEEE Transactions on Fuzzy Systems, 2000, 8 (2):200-211.
  • 7CAO Y.Y., FRANK P.M., Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models [J]. Fuzzy Sets and Systems, 2001, 124 (2): 213-229.
  • 8LIEN H C, Further results on delay-dependent robust stability of uncertain fuzzy systems with time-varying delay [J]. Chaos, Solitons and Fraetals, 2006, 28 (2): 422-427.
  • 9ZHANG Bao-yong, LAM James, XU Sheng-yuan, SHU Zhan, Robust stabilization of uncertain T-S fuzzy time-delay systems with exponential estimates [J] Fuzzy Sets and Systems, 2009, 160 (2): 1720 1737.
  • 10ZHAO Yah, GAO Hui-jun, LAM J, DU Bao-zhu, Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach [J]. IEEE Transactions on Fuzzy Systems, 2009, 17 (4):75(762.

共引文献21

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部