期刊文献+

基于改进伯格博弈模型的云计算任务调度 被引量:6

Cloud Computing Task Scheduling Algorithm Based on Improved Berg Game Model
下载PDF
导出
摘要 为解决云计算环境下海量资源调度问题,提出一种能提高整体服务质量的任务调度模型,引用罗尔斯正义分配伯格模型和博弈算法理论,设计了一种基于改进的伯格博弈模型的任务调度算法,将改进的伯格模型把关于社会分配理论和博弈理论应用到云环境的任务调度中。然后将基于改进的伯格博弈模型的任务调度算法分别与公平优先、效率优先的任务调度算法进行对比分析,在CloudSim仿真平台上,分别将上述3种任务调度算法进行调试实现。结果表明,基于改进的伯格博弈模型的任务调度算法不仅满足效益优先兼顾公平的分配策略,同时也显著提高了整体服务质量。 To solve the problem of massive resource scheduling in cloud computing environment,a task scheduling model is proposed,which can improve the overall service quality.This paper proposes an intelligent and fair task scheduling algorithm by quoting Berg model of Rawls justice allocation and game algorithm theory.The proposed algorithm applies the improved Berg model,social distribution theory and game theory to the task scheduling in the cloud computing environment.Then,it is compared with algorithms of task scheduling including fair priority,giving priority to efficiency.Finally,the above three task scheduling algorithms are debugged and implemented on the CloudSim simulation platform.From the experimental results,it can be seen that the proposed algorithm not only satisfies the benefit priority and equitable distribution strategy but also meets the user’s comprehensive QoS requirements.
作者 孙红 赵娜 SUN Hong;ZHAO Na(School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《控制工程》 CSCD 北大核心 2020年第3期500-506,共7页 Control Engineering of China
基金 国家自然科学基金项目(61472256、61170277、61703277) 沪江基金项目(C14002)。
关键词 云计算 任务调度 伯格模型 博弈理论模型 Cloud computing task scheduling Berg model game theoretical model
  • 相关文献

参考文献6

二级参考文献48

  • 1潘全,郭鸣,林鹏.基于MapReduce的最大团算法[J].系统工程理论与实践,2011,31(S2):150-153. 被引量:5
  • 2Culler D E.并行计算机体系结构[M].北京:机械工业出版社,2002.
  • 3Mattson T G.并行编程模式[M].北京:清华大学出版社,2005.
  • 4Brown C E. The Essential Guide to Flex 2 with ActionSeript 3.0[M].北京:人民邮电出版社,2007.
  • 5PANG N T,MICHAEL S,VIPIN K.数据挖掘导论(英文版)[M].北京:人民邮电出版社,2006.
  • 6马卫武 李念平 杨志昂.室内空气品质综合评价权重系数的确定与分析.通风除尘,2004,(11):9-11.
  • 7Armbrust M, Fox A, Griffith R et al. A view of cloud computing. Communications of the ACM, 2010, 53(4): 50 58.
  • 8Patterson D, Brown A, BroadweIl P et al. Recovery oriented computing (ROC).. Motivation, definition, techniques, and case studies. Berkeley: UC Berkeley, Technical Report: UCB/CSD-02-1175 , 2002.
  • 9Clark C, Fraser K, Hand Set al. Live migration of virtual machines//Proceedings of the 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI'05). Boston, 2005: 273-286.
  • 10Zhu X, Young D, Watson B.J, Wang Z et al. 1000 lslands: An integrated approach to resource management forvirtualized data centers. Cluster Computing, 2008, 12(1): 45-57.

共引文献227

同被引文献76

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部