期刊文献+

基于功能性近红外光谱识别右脚三种想象动作研究 被引量:9

Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy
原文传递
导出
摘要 基于功能性近红外光谱(fNIRS)的脑机接口(BCI)是一种新型的人机交互手段。为探究单个肢体不同运动想象动作fNIRS信号的可分性,研究采集了15名受试者(业余足球爱好者)在想象右脚三种动作(传球、停球和射门)期间的fNIRS信号,提取了不同想象动作期间HbO信号的相关系数作为特征,构造了基于支持向量机的三分类模型。试验结果发现:右脚三种想象动作的分类准确率为78.89%±6.161%;两类运动想象动作的分类,即传球与停球、传球与射门和停球与射门的分类准确率分别为85.17%±4.768%、82.33%±6.011%、89.33%±6.713%。研究结果表明单个肢体不同运动想象的fNIRS具有可分性,这可望为fNIRS-BCI增加新的控制命令,也可为单侧中风患者康复训练和控制外设提供一种新的选择。此外,研究也表明相关系数可以作为分类不同想象动作的一种有效特征。 Brain-computer interface(BCI) based on functional near-infrared spectroscopy(fNIRS) is a new-type human-computer interaction technique. To explore the separability of fNIRS signals in different motor imageries on the single limb, the study measured the fNIRS signals of 15 subjects(amateur football fans) during three different motor imageries of the right foot(passing, stopping and shooting). And the correlation coefficient of the HbO signal during different motor imageries was extracted as features for the input of a three-classification model based on support vector machines. The results found that the classification accuracy of the three motor imageries of the right foot was 78.89%±6.161%. The classification accuracy of the two-classification of motor imageries of the right foot, that is, passing and stopping, passing and shooting, and stopping and shooting was 85.17%±4.768%, 82.33%±6.011%, and 89.33%±6.713%,respectively. The results demonstrate that the fNIRS of different motor imageries of the single limb is separable, which is expected to add new control commands to fNIRS-BCI and also provide a new option for rehabilitation training and control peripherals for unilateral stroke patients. Besides, the study also confirms that the correlation coefficient can be used as an effective feature to classify different motor imageries.
作者 李玉 熊馨 李昭阳 伏云发 LI Yu;XIONG Xin;LI Zhaoyang;FU Yunfa(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,P.R.China;Integration and Innovation team of Brain Cognition and Brain Computer Intelligence,Kunming University of Science and Technology,Kunming 650500,P.R.China;Key Laboratory of Computer Technology Application in Yunnan Province,Kunming 650500,P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2020年第2期262-270,共9页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(81771926,61763022,81470084,61463024) 昆明理工大学脑认知与脑机智能融合创新团队建设项目资助。
关键词 功能性近红外光谱 运动想象 相关系数 脑机接口 分类识别 functional near-infrared spectroscopy motor imagery correlation coefficient brain-computer interface classification and recognition
  • 相关文献

参考文献3

二级参考文献3

共引文献24

同被引文献50

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部