期刊文献+

边界约束对焊接残余应力及其释放的影响分析 被引量:2

Numerical calculation on welding residual stress and release considering boundary constraint effects
下载PDF
导出
摘要 采用热弹塑性有限元方法对AH36船用高强度钢对接焊的残余应力进行数值计算,获得了焊缝区域2条路径方向上的纵向残余应力和横向残余应力分布。分析焊接过程中板材不同边界约束对于焊接残余应力的影响,并与试验结果对比。计算结果表明,2条路径上的横向焊接残余应力均受边界约束影响较大,且约束越强残余应力越大;纵向焊接残余应力受边界约束影响与横向残余应力相反,约束越强残余应力越小。随着边界约束增强,加载同样循环次数,无论横向还是纵向焊接残余应力释放程度增加,第一次循环释放量占总的50次循环释放量比例逐渐增加。 In this paper,the thermo-elastic-plastic finite element method is used to calculate the residual stress of butt welding of AH36 marine high-strength steel.The longitudinal and transverse residual stress distributions in the directions of two paths near the weld zone are obtained.The influence of different boundary constraints of the plate on the welding residual stress during the welding process is further analyzed and compared with the test results.The calculation results show that the transverse welding residual stresses in the two path directions are greatly affected by the boundary constraints,and the transverse residual stress increases with the constraints becoming stronger.Contrary to transverse welding residual stress,the longitudinal residual stress decreases with the constraints becoming stronger.As the boundary constraint is enhanced,and the degree of release of transverse and longitudinal welding residual stress increases with the same number of cycles of loading,and the release proportion of the first cycle to the total of 50 cycles is gradually increased.
作者 沈言 罗广恩 郑远昊 SHEN Yan;LUO Guang-en;ZHENG Yuan-hao(School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China;Jiangsu Automation Research Institute,Lianyungang 222061,China)
出处 《舰船科学技术》 北大核心 2020年第3期40-46,共7页 Ship Science and Technology
基金 江苏省自然科学基金资助项目(BK20150468) 工信部资助项目。
关键词 边界约束 焊接残余应力 数值仿真 焊接残余应力释放 boundary constraint welding residual stress numerical simulation welding residual stress release
  • 相关文献

参考文献7

二级参考文献20

  • 1[1]Lindgren L E.Finite element modeling and simulation of welding,Part 1:Increased complexity[J].Journal of Thermal Stresses,2001,24(4):141-192.
  • 2[2]Lindgren L E.Finite element modelling and simulation of welding,Part 2:Improved material modeling[J].Journal of Thermal Stresses,2001,24(4):195-231.
  • 3[3]Lindgren L E.Finite element modeling and simulation of welding,Part 3:Efficiency and integration[J].Journal of Thermal Stresses,2001,24(4):305-334.
  • 4[4]Lindgren L E,Haggblad H A,McDillb J M J,et al.Automatic remeshing for three-dimensional finite element simulation of welding[J].Computer Methods in Applied Mechanics and Engineering,1997,147(3):401-409.
  • 5[5]Runnemalm H,Hyun S.Three-dimensional welding analysis using an adaptive mesh scheme[J].Computer Methods in Applied Mechanics and Engineering.2000,189(2):515-523.
  • 6[6]Shi Qingyu,Lu Anli,Zhao Haiyan,et al.Development and application of the adaptive mesh technique in the three-dimensional numerical simulation of the welding process[J].Journal of Materials Processing Technology,2002,121(2-3):167-172.
  • 7[7]Duranton P,Devaux J,Robin V,et al.3D modelling of multipass of a 316L stanless steel pipe[J].Journal of Materials Processing Technology,2004,153-154:457-463.
  • 8[8]Brown S B,Song H.Rezoning and dynamic substructuring techniques in FEM simulations of welding processes[J].Journal of Engineering for Industry,1993,115(4):415-423.
  • 9[9]Serizawa H,Itoh S,Tsuda T,et al.Development of 3-dimensional high-speed FEM for welding problem[C]//Proceedings of the International Conference on Welding Science and Engineering,2005:240-246.
  • 10Tsai C L,Welding Research Abroad,1996年,42卷,1期,34页

共引文献175

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部