期刊文献+

一种卷积神经网络的车辆和行人检测算法 被引量:3

Vehicle and pedestrian detection algorithm based on convolutional neural network
下载PDF
导出
摘要 针对传统车辆行人检测算法速度慢、精度低、难以进行多尺寸检测等问题,设计了一种深度卷积神经网络,应用到密集车辆和行人的实时检测。采用批标准化、Res结构、SSES结构搭建深度卷积神经网络,融合不同深度的特征并用3个不同尺寸特征图检测以提高网络对多尺寸目标的检测能力。神经网络在PASCAL VOC2007、2012车辆和人混合数据集上训练,检测车辆、行人的平均精度分别到达80.1%、83.6%,检测单张图片耗时0.04 s。实验结果表明,设计的算法检测车辆、行人精度较高,多尺寸目标检测效果好,可实时检测。 Aiming at the problems of slow speed,low precision and difficulty in multi-size detection of traditional vehicle pedestrian detection algorithms,a deep convolutional neural network is designed and applied to real-time detection of dense vehicles and pedestrians.The deep convolutional neural network is built by batch normalization,residual networks and split-squeeze-excitation-and-sum networks.It combines the features of different depths and detects multi-size objects with three different size feature maps to improve network detection ability.Neural network is trained on PASCAL VOC 2007 and 2012 car and person mixed data sets,the average accuracy of car and person detection reaches 80.1%and 83.6%respectively,the detection of a single picture takes 0.04 s.The experimental results show that the proposed algorithm has high accuracy in detecting car and person,good results in multi-size object detection,and real-time detection.
作者 李大华 汪宏威 高强 于晓 沈洪宇 LI Dahua;WANG Hongwei;GAO Qiang;YU Xiao;SHEN Hongyu(Tianjin Key Laboratory for Control Theory&Applications in Complicated Systems,College of Electrical and Electronic Engineering,Tianjin University of Technology,Tianjin 300384,China)
出处 《激光杂志》 北大核心 2020年第4期70-75,共6页 Laser Journal
基金 国家自然科学基金项目(No.61502340) 天津市自然科学基金项目(No.18JCQNJC01000) 天津市教委科研计划项目(No.2018KJ133)。
关键词 监控系统 人工智能 深度学习 神经网络 目标检测 surveillance system artificial intelligence deep learning neural networks object detection
  • 相关文献

参考文献10

二级参考文献81

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2WU B. Detection of Multiple Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors[C]//IEEE International Conference on Computer Vision, 2005, 90-97.
  • 3bourdey L. Robust Object Detection Via Soft Cascade[C]//IEEE International Conference on Computer Vision and Pattern Recognition,2005, Ⅱ: 236-243.
  • 4mohan A, papageorgiou C, poggio T. Example-Based Object Detection in Images by Components [J]. IEEE Transaction On Pattern Analysis and Machine Intelligence (S0162-8828), 2001, 23(4):349-361.
  • 5viola P, jones M J, snow D. Detecting Pedestrians Using Patterns of Motion and Appearance [J]. International Journal of Computer Vision(S0920-5691), 2005, 63(2): 153-161.
  • 6dalal N, triggs B. Histograms of Oriented Gradients for Human Detection[C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2005, I: 886-893.
  • 7WU Y, YU T, HUA G A. Statistical Field Model for Pedestrian Detection[C]//IEEE International Conference on Computer Vision,2005, I: 1023-1030.
  • 8viola E jones M. Rapid Object Detection Using A Boosted Cascade of Simple Feature[C]//Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2001, h 551-518.
  • 9mikolajczvk K, schmid C, zissenrman A. Human Detection Based on a Probabilistic Assembly of Robust Part Detector[C]//ECCV 2004, I:69-82.
  • 10friedman J, hastie T, tibshirani R. Additive Logistic Regression: a Statistical View of Boosting[C]//The Annals of Statistics, 2000, 28(2):337-407.

共引文献440

同被引文献13

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部