期刊文献+

基于混沌粒子群优化核极限学习机的变压器故障诊断方法 被引量:2

Transformer Fault Diagnosis Method Based on CPSO Kernel Extreme Learning Machine
下载PDF
导出
摘要 为提高电力变压器故障诊断的准确度,提出一种基于核极限学习机(KELM)的变压器故障诊断方法,利用混沌优化改善粒子群算法的全局寻优性能。该方法首先用KELM建立故障诊断模型,再利用改进后的混沌粒子群算法(CPSO)对KELM的参数进行优化。结合油中溶解气体分析法(DGA)获得样本数据,通过实例仿真结果对比分析表明,所用算法具有更高的诊断准确率,提高了变压器故障诊断的可靠性。 In order to improve the accuracy of power transformer fault diagnosis,a transformer fault diagnosis method based on kernel extreme learning machine(KELM)is proposed.Chaos optimization is used to improve the global optimization performance of particle swarm optimization algorithm.In this method,firstly KELM is used to establish a fault diagnosis model,and then the improved chaotic particle swarm algorithm(CPSO)is used to optimize KELM parameters.Combined with the sample data obtained by dissolved gas analysis in oil(DGA),the comparative analysis of simulation results shows that the algo-rithm has higher diagnostic accuracy and improves the reliability of transformer fault diagnosis.
作者 李成强 许冠芝 LI Chengqiang;XU Guanzhi(School of Electronics and Information,Xi'an Polytechnic University,Xi'an 710600,China)
出处 《微处理机》 2020年第2期38-44,共7页 Microprocessors
关键词 变压器 故障诊断 混沌优化 粒子群优化 核极限学习机 Transformer Fault diagnosis Chaos optimization Particle swarm optimization Kernel extreme learning machine
  • 相关文献

参考文献13

二级参考文献140

共引文献447

同被引文献21

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部