摘要
为了解决固体蓄热装置中蓄热模块在温度载荷下容易发生热变形,导致蓄热体结构不稳定甚至坍塌问题,采用弹性力学理论对温度载荷下蓄热体的热变形量及热应力进行理论推导,利用数值模拟方法分析了不同占孔比、不同进口空气温度以及固定约束对蓄热体热变形及温度分布的影响,并搭建试验平台对数值模拟结果进行验证。研究表明:进口空气温度越高,蓄热体热变形越大,进口空气温度为950℃时最大变形率达到1.73%;相同工况下,20%占孔比蓄热体热变形量最小、温度分布均匀;固定约束位置出现热应力集中现象,最大热变形出现在蓄热体顶部。
In order to solve the problem that the thermal storage module in the solid thermal storage device is prone to thermal deformation under temperature load,which leads to the structural instability and even collapse of the thermal storage body,the theory of elastic mechanics is used to study the thermal deformation and thermal stress of the thermal storage body under temperature load.The effects of different hole ratio,inlet air temperature and fixed constraints on thermal deformation and temperature distribution of regenerator were analyzed by numerical simulation,and the numerical simulation results were verified by the test platform.The simulation and experimental results show that the higher the inlet air temperature,the greater the thermal deformation of the regenerator,and the maximum deformation rate is 1.73%when the inlet air temperature is 950℃.Under the same working conditions,the thermal deformation of the regenerator with a hole ratio of 20%is the smallest and the temperature distribution is uniform.Thermal stress concentration occurs at the fixed constraint position,and the maximum thermal deformation occurs around the top of the thermal storage body.These conclusions are expected to serve as reference for structural optimization of regenerators.
作者
邢作霞
赵海川
葛维春
杨长龙
XING Zuo-xia;ZHAO Hai-chuan;GE Wei-chun;YANG Chang-long(School of Electrical Engineering,Shenyang University of Technology,Shenyang,China,Post Code:110870;Liaoning Electric Power Co.Ltd.,Shenyang,China,Post Code:110006;State Grid Liaoning Power Co.Ltd.,Shenyang Power Supply Company,Shenyang,China,Post Code:110006)
出处
《热能动力工程》
CAS
CSCD
北大核心
2020年第1期98-105,共8页
Journal of Engineering for Thermal Energy and Power
基金
辽宁省自然科学基金(2017054067)
国家电网公司科技项目(SGLNSY00FZTS1801309)。
关键词
固体蓄热
热变形量
热应力
数值模拟
solid heat storage
thermal deformation
thermal stress
numerical simulation