期刊文献+

Epitranscriptomic technologies and analyses 被引量:1

Epitranscriptomic technologies and analyses
原文传递
导出
摘要 RNA can interact with RNA-binding proteins(RBPs),mRNA,or other non-coding RNAs(ncRNAs)to form complex regulatory networks.High-throughput CLIP-seq,degradome-seq,and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions.However,assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins(RBPs)remains technically challenging.Chemical modifications to mRNA also play important roles in regulating gene expression.Investigation of the functional roles of these modifications relies highly on the detection methods used.RNA structure is also critical at nearly every step of the RNA life cycle.In this review,we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs.We also summarize methods used to detect RNA modifications and to probe RNA structure. RNA can interact with RNA-binding proteins(RBPs), mRNA, or other non-coding RNAs(ncRNAs) to form complex regulatory networks. High-throughput CLIP-seq, degradome-seq, and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions. However, assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins(RBPs) remains technically challenging. Chemical modifications to mRNA also play important roles in regulating gene expression. Investigation of the functional roles of these modifications relies highly on the detection methods used. RNA structure is also critical at nearly every step of the RNA life cycle. In this review, we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs. We also summarize methods used to detect RNA modifications and to probe RNA structure.
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第4期501-515,共15页 中国科学(生命科学英文版)
关键词 NCRNA bioinformatics CLIP-seq RNA modification quantification and locus-specific detection METHODS transcriptome-wide sequencing TECHNOLOGIES RNA structuromes RNA structure probing METHODS ncRNA bioinformatics CLIP-seq RNA modification quantification and locus-specific detection methods transcriptome-wide sequencing technologies RNA structuromes RNA structure probing methods
  • 相关文献

参考文献2

二级参考文献1

共引文献69

同被引文献9

引证文献1

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部