期刊文献+

涡轮叶片尾缘凹坑/凸起结构气膜冷却特性研究 被引量:1

Film Cooling Characteristic on Trailing Edge Cutback of Gas Turbine Airfoils with Dimple/Protrusion Structure
下载PDF
导出
摘要 为探究吸力面凹坑和凸起结构对涡轮叶片尾缘气膜冷却特性的影响,在吹风比M=1.1时(雷诺数Re=2.5×10^5),采用数值模拟方法,通过在叶片尾缘吸力面上加入凹坑或凸起,对涡轮叶片尾缘的冷却性能和流动机理进行了详细分析。结果表明:与原始结构相比,叶片尾缘凹坑和凸起结构提高了劈缝出口下游远距离端X/H>6(H为劈缝宽度,为4.8mm)区域气膜冷却效率,对下游的X/H<6区域气膜冷却效率影响较小;三种叶片尾缘结构,沿着流向方向会产生由二维展向涡到发卡涡,再到流向涡的变化过程,凹坑和凸起结构通过抑制流体的扰动,改变流体流动情况,提高了劈缝出口下游远距离端气膜冷却效率。 In order to investigate the effects of the dimple and protrusion structures of suction surface on film cooling characteristics of turbine blade trailing edge,the cooling performance and flow mechanism of turbine blade trailing edge were analyzed in detail by numerical simulation method when the blowing ratio M=1.1(Re=2.5×10^5).The results show that,compared with the original one,the dimple and protrusion structure on trailing edge can improve the film cooling efficiency in the region of X/H>6(the split width of H is 4.8 mm)downstream of the split outlet,while have little effect on the film cooling efficiency in the region of X/H<6 downstream.Along the direction of flow,these three kinds of trailing edge structures will produce a process from two-dimensional spread vortices to hairpin vortices,then to flow vortices.By restraining fluid disturbance and changing the fluid flow,the dimple and protrusion structures can improve the film cooling efficiency at the far downstream of the split outlet.
作者 张玲 史梦颖 原峥 洪文鹏 ZHANG Ling;SHI Meng-ying;YUAN Zheng;HONG Wen-peng(College of Energy Resource and Mechanical Engineering,Northeast Electric Power University,Jilin 132012,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2020年第2期372-381,共10页 Journal of Propulsion Technology
基金 国家自然科学基金(51576036)。
关键词 涡轮 叶片 气膜冷却 吹风比 数值模拟 凹坑-凸起结构 Turbine Blade Film cooling Blowing ratio Numerical simulation Dimple-protrusion structure
  • 相关文献

参考文献3

二级参考文献16

  • 1周志强,朱惠人,许都纯,张魏.涡轮叶片尾缘半劈缝冷却结构压力系数的实验研究[J].机械设计与制造,2005(8):116-118. 被引量:3
  • 2Taslim M E, Spring S D, Mehlman B P. Experimental investigation of film cooling effectiveness for slots of various exits geometries[J]. Journal of Thermophysics and Heat Transfer, 1992,6(2): 302-307.
  • 3Sivasegaram S, Whitelaw J H. Film cooling slots: the importance of lip thickness and injection angle[ J]. Journal of Mechanical Engineering Science, 1969,11 ( 1 ) : 22-27.
  • 4Uzol O, Camci C. Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: part 2-external aerodynamics, total pressure losses, and predictions[ J ]. Journal of Turbomachinery, 2001 , 123 ( 2 ) : 249-257.
  • 5Uzol O, Camci C, Glezer B. Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: part 1--effect of cutback length, spanwise rib spacing, free-stream Renolds number, and chordwise rib length on discharge coefficients[ J]. Journal of Turbomachinery, 2001, 123(2) : 238-248.
  • 6Holloway D S, Leylek J H, Buck F A. Pressure side bleed fihn cooling: part 2--unsteady framework for experimental and computational results [ R ]. ASME 2002- GT-30472.
  • 7Holloway D S, Leylek J H, Buck F A. Pressure side bleed film cooling: part 1--steady framework for experimental and computational results [ R ]. ASME 2002- GT-30471.
  • 8Bittlinger G,Schulz A,Wittig S.Film cooling effectiveness and heat transfer coefficients for slot injection at high blowing ratios[R].ASME J GT-94-182.
  • 9Sturgess G J.Design of combustor cooling slots for high film cooling effectiveness:Part 1,Film general development[R].ASME 85-GT-35.
  • 10Sturgess G J,Pfeiffer G D.Design of combustor cooling slots for high film cooling effectiveness:Part 2,Film initial development[R].ASME 85-GT-36.

共引文献19

同被引文献32

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部