期刊文献+

基于自适应指数加权移动平均滤波的快速去雾算法 被引量:15

Fast Defogging Algorithm Based on Adaptive Exponentially Weighted Moving Average Filtering
原文传递
导出
摘要 经典的暗原色先验去雾算法易丢失图像细节信息,基于保边滤波的去雾算法虽可以有效保护图像细节,却耗时较长。针对以上问题,提出一种能够很好地保护图像边缘细节且耗时较短的自适应指数加权移动平均滤波算法,并与改进的暗通道结合,实现快速去雾。首先,对暗通道加以改进并求得透射率粗分布;再利用自适应指数加权移动平均滤波算法对透射率进行优化;之后修复明亮区域透射率,避免颜色失真;最后通过变换大气散射模型求解得到去雾图像。实验结果表明:本文算法具有很快的执行速度,且经本文算法处理后的去雾图像质量较高,在有效边缘强度、色彩还原能力、结构信息这三个无参考客观评价指标下均表现不错。 The classical dark channel prior defogging algorithm easily loses image details.Alternatively,the defogging algorithm based on edge-preserving filtering can effectively protect image details;however,it is time-consuming.Aiming at the aforementioned problems,this paper proposed an adaptive exponentially weighted moving average filtering algorithm that protected image edge details while taking less time.Combined with an improved dark channel,this method achieved fast and precise defogging.First,the improved dark-channel algorithm was applied to obtaining a rough distribution of atmospheric transmittance.Second,the transmittance was optimized by employing the adaptive exponentially weighted moving average filtering algorithm.Subsequently,the transmittance of the bright region was repaired to avoid color distortion.Finally,the defogged image was processed using the transformation of the atmospheric scattering model.The experimental results show that the proposed algorithm has a high execution speed;moreover,the defogged image processed using the proposed algorithm has good performance under the following three nonreference objective evaluation indexes:effective edge intensity,color reproduction ability,and structural information.
作者 梅康 刘小勤 沐超 秦晓琪 Mei Kang;Liu Xiaoqin;Mu Chao;Qin Xiaoqi(Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei,Anhui 230031,China;University of Science and Technology of China,Hefei,Anhui 230026,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第1期242-251,共10页 Chinese Journal of Lasers
基金 国家自然科学基金(61605223,41576185)。
关键词 图像处理 去雾 指数加权移动平均 暗通道 大气散射模型 image processing defogging exponentially weighted moving average dark channel atmospheric scattering model
  • 相关文献

参考文献5

二级参考文献109

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8.
  • 4Fattal R Single image dehazing [ C ]// Proceedings of ACM SIGGRAPH 2008. New York, USA : ACM,2008 : 1-9.
  • 5KaimingH, Jian S, Xiaoou T. Single image haze removal using dark channel prior [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE ,2009 : 1956-1963.
  • 6Jean- Philippe T, Nicolas H. Fast visibility restoration from a single color or gray level image [ C ]//Proceeding of IEEE 12th International Conference on Computer Vision. New York, USA: IEEE,2009:2201-2208.
  • 7姚波,黄磊,刘昌平.去雾增强图像质量客观比较方法的研究[C]//全国模式识别学术会议.纽约:IEEE,2009:1-5.
  • 8Sheikh H R, Bovik A C, Cormack L Noreference quality assessment using natural scene statistics :_JPEG2000 [ J ]. IEEE Transactions on image Processing ,2005,14 ( 11 ) : 1918-1927.
  • 9Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment : from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing,200g, 13 (4) :600-612.
  • 10Carnec M,Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference [ J]. Image Communication,2008,23 (4) :239-256.

共引文献317

同被引文献116

引证文献15

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部