摘要
对于传统蚁群算法用于云计算资源分配和调度问题过程中存在的不足,提出了一种可以提高负载均衡度、缩短任务执行时间、降低任务执行成本的改进自适应蚁群算法,改进算法以能够基于用户提交的任务求解出执行时间较短、费用较低,负载率均衡的分配方案为目标,通过CloudSim平台对传统蚁群算法、最新的AC-SFL算法、改进自适应蚁群算法进行仿真实验对比。实验数据表明,改进后的自适应蚁群算法能够快速找出最优的云计算资源调度问题的解决方案,缩短了任务完成时间,降低了执行费用,保持了整个云系统中心的负载均衡。
To address the shortcomings of the standard ant colony algorithm in cloud-computing resource allocation and scheduling,this study proposes an adaptive ant colony algorithm to improve load balance and reduce task execution time and costs.The proposed algorithm can solve tasks submitted by users with a short execution time,low cost,and balanced load rate.The traditional ant colony algorithm,the latest AC-SFL algorithm,and the improved adaptive ant colony algorithm are simulated using the CloudSim platform.Experimental results show that,the improved adaptive ant colony algorithm is able to quickly find a solution for the optimal cloud computing resource scheduling,shorten task completion time,reduce execution cost,and maintain the load balance of the entire cloud system center.
作者
聂清彬
潘峰
吴嘉诚
曹耀钦
Nie Qingbin;Pan Feng;Wu Jiacheng;Cao Yaoqin(Southwest Jiaotong University Hope College,Chengdu,Sichuan 610400,China;Chongqing Institute of Engineering,Chongqing 400065,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2020年第1期82-88,共7页
Laser & Optoelectronics Progress
基金
2018年教育部第二批产学协作育人项目立项项目(201802002058)
成都市哲学社会科学研究基地成都市交通+旅游大数据应用技术研究基地项目(2019001,2018022,2018003)。
关键词
光通信
云计算
自适应
蚁群算法
任务调度
optical communications
cloud computing
self-adaption
ant colony algorithm
task scheduling