期刊文献+

果胶结构域精细结构研究进展 被引量:28

A Review: Domain Fine Structure of Pectic Polysaccharides
下载PDF
导出
摘要 果胶是一类以D-半乳糖醛酸和中性糖组成的酸性杂多糖,广泛存在于植物的细胞壁中。果胶直接影响植物组织的完整性和坚实度、植物对病原菌的抵抗能力,具有凝胶、乳化、稳定、增稠等功能,以及调节肠道菌群、改善高血脂、预防结肠癌等健康功效。果胶分子结构包含聚半乳糖醛酸、鼠李半乳糖醛酸聚糖Ⅰ型和Ⅱ型、木糖半乳糖醛酸聚糖等结构域单元,它们通过共价键相互连接组成果胶大分子。本文综述了果胶分子主要结构域单元精细结构和果胶分子结构模型的研究进展。 Pectic polysaccharides are a group of polysaccharides composed of D-galacturonic acid and neutral saccharides, and they widely exist in plant cell walls. Pectic polysaccharides are endowed with multifunctional properties such as direct effects on plant tissue integrity and firmness and the self-protection of plants against phytopathogens, gelling ability, emulsifying capacity and emulsion stability, thickening ability and health benefits including regulating the intestinal microbiota, alleviating hyperlipidemia and prevent colon cancer. The fine structures of pectic polysaccharides include pectic domains such as homogalacturonan, rhamnogalacturonan-I, rhamnogalacturonan-II and/or xylogalacturonan, which are covalently inter-linked to form pectin complexes. This review focuses on the depiction of the structural domains of pectic polysaccharides with the aim of providing the latest information on the structural models of pectic polysaccharides.
作者 易建勇 毕金峰 刘璇 吕健 周沫 吴昕烨 赵圆圆 杜茜茜 YI Jianyong;BI Jinfeng;LIU Xuan;LüJian;ZHOU Mo;WU Xinye;ZHAO Yuanyuan;DU Qianqian(Key Laboratory of Agro-products Processing,Ministry of Agriculture and Rural Affairs,Institute of Food Science and Technology,Chinese Academy of Agricultural Sciences,Beijing 100193,China)
出处 《食品科学》 EI CAS CSCD 北大核心 2020年第7期292-299,共8页 Food Science
基金 “十三五”国家重点研发计划重点专项(2016YFD0400700 2016YFD0400704) 中国农业科学院农产品加工研究所所长基金项目(S2019RCCG01)。
关键词 果胶多糖 结构域 精细结构 果胶酶 共价连接 pectic polysaccharides structural domain fine structure pectinase covalent connection
  • 相关文献

参考文献1

二级参考文献76

  • 1An, S.H., Sohn, K.H., Choi, H.W., Hwang, I.S., Lee, S.C., and Hwang, B.K. (2008). Pepper pectin methyl-esterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta. 228, 61-78.
  • 2Barnavon, L., Doco, T., Terrier, N., Ageorges, A., Romieu, C., and Pellerin, R (2001). Involvement of pectin methyl-esterase during the ripening of grape berries: partial eDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins. Phytochemistry. 58, 693-701.
  • 3Bellincampi, D., Cardarelli, M., Zaghi, D., Serino, G., Salvi, G., Gatz, C., Cervone, E, Altamura, M.M., Costantino, R, and Lorenzo, G.D. (1996). Oligogalacturonides prevent rhizogenesis in rolB-transformed tobacco explants by inhibiting auxininduced expression of the roIB gene. Plant Cell. 8, 477-487.
  • 4Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier, F., Lahaye, M., Hofte, H., and Truong, H.-N. (2002). QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell. 14, 2577-2590.
  • 5Bosch, M., and Hepler, RK. (2005). Pectin methyl-esterases and pectin dynamics in pollen tubes. Plant Cell. 17, 3219-3226.
  • 6Bosch, M., and Hepler, RK. (2006). Silencing of the tobacco pollen pectin rnethyl-esterase NtPPME1 results in retarded in vivo pollen tube growth. Planta. 223, 736-745.
  • 7Bosch, M., Cheung, A.Y., and Hepler, P.K. (2005). Pectin methyl- esterase, a regulator of pollen tube growth. Plant Physiol. 138, 1334-1346.
  • 8Bove, J., Vaillancourt, B., Kroeger, J., Hepler, P.K., Wiseman, RW., and Geitmann, A. (2008). Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol. 147, 1646-1658.
  • 9Branca, C., DeLorenzo, G., and Cervone, F. (1988). Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments. Physiol Plant. 72, 499-504.
  • 10Brummell, D.A., and Harpster, M.H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47, 311-340.

共引文献19

同被引文献368

引证文献28

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部