期刊文献+

大疫当前,数学能做什么? 被引量:3

Facing Epidemic Situation:What Mathematics Can Do?
下载PDF
导出
摘要 以微积分为标志的近现代数字的发展,为传染病的数学模型研究提供了有力的工具,本文回顾了几个著名的传染病模型,四于此次新型冠状病毒造成的疫情的传播规律.预防措施和未来趋势的预测.均具有重要参考价值。
作者 梁进 Liang Jin(School of Mathem atical Science,Tongji University,Shanghai 200092)
出处 《科学》 2020年第2期57-60,共4页 Science
  • 相关文献

参考文献1

二级参考文献8

  • 1Jianquan Li, Zhien Ma. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[ J]. Math. Com- puter Modelling, 2002 (35) : 1235 -1243.
  • 2V. Capasso. Mathematical Structures of Epidemic Systems [ M ]. Vol. 97 of Lecturenotes in Biomathematics. Berlin: Springer-Ver- lag, 1993.
  • 3J. Mena-Lorca, H.W. Hethcote. Dynamic models of infectious diseases as regulations of population sizes [ J ]. J. Math. Biol. , 1992, 30:693-716.
  • 4H.R. Thieme. Convergence results and a Poincare-Bendixson tri- chotomy for asymptotically autonomous differential equations [ J ].J. Math. Biol. , 1991, 30:462-471.
  • 5R.M. Anderson, R.M. May. Population biology of infectious dis- eases[J]. Nature, 1979, 180:361-367.
  • 6L.Q. Gao, H.W. Hethcote. Disease transmission models with density-dependent demographics[J]. J. Math. Biol., 1992, 30: 717 -731.
  • 7M.Y. Li, Liancheng Wang. Global stability in some SEIR epidem- ic models[ J]. The IMA Volumes in Mathematics and its Applica- tions Volume 126, 2002:295 - 311.
  • 8H.R. Thieme. Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations[ J]. Math. Bios- ci. , 1992, 111: 99-130.

共引文献6

同被引文献32

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部