期刊文献+

城市排水管道缺陷检测方法及发展现状探析 被引量:17

Review on Defect Detection Methods and Development Status of Urban Drainage Pipeline
下载PDF
导出
摘要 城市排水管道检测对整个城市的排水效果有直接影响,为了保证城市排水管道能够实现顺利排水就需要采取科学方法来进行检测。本文以福州市连坂片区排水管网改扩建工程为背景,对城市排水管道的传统检测法和现代检测法中潜望镜、CCTV、声呐、激光和电法检测的优缺点进行对比分析,并对现代检测法中CCTV、声呐和激光检测发展与研究现状进行总结,最后对排水管网改扩建工程前期排水管道检测效果进行综合评价。 The inspection of urban drainage pipeline has directly impacted the drainage effect of the whole city,so it is necessary to adopt scientific methods to detect to ensure the smooth drainage of urban drainage pipeline.In the paper,firstly,with the reconstruction and expansion project of drainage network in Lianban District of Fuzhou,the advantages and disadvantages of traditional and modern inspection methods of urban drainage pipeline,such as periscope,CCTV,sonar,laser and electricity,are compared and analyzed.Secondly,the development and research status of CCTV,sonar and laser detection in modern detection methods of drainage pipeline are summarized.Finally,the inspection effect of the drainage pipeline in the early stage of the project is comprehensively evaluated.
作者 王新妍 WANG Xinyan(China Railway 18th Bureau Group Construction and Installation Engineering Co.Ltd.,Tianjin 300308,China)
出处 《铁道建筑技术》 2020年第2期50-53,58,共5页 Railway Construction Technology
基金 中铁十八局集团有限公司科技研究开发计划项目(G19-09)。
关键词 管道检测 潜望镜 CCTV 声呐 激光 发展现状 pipeline inspection periscope CCTV sonar laser development status
  • 相关文献

参考文献3

二级参考文献26

  • 1郭海涛,田坦,张春田.基于模糊聚类的声呐图像多区域分割[J].海洋技术,2004,23(3):39-40. 被引量:6
  • 2阳凡林,独知行,李家彪,吴自银,初凤友.基于MRF场的侧扫声呐图像分割方法[J].海洋学报,2006,28(4):43-48. 被引量:12
  • 3陈立强,刘忠,田晓东.基于边缘特征的水下目标分类识别算法[J].自动化技术与应用,2007,26(8):77-79. 被引量:3
  • 4Mignotte M, Collet C, Perez P, et al. Hybrid genetic optimization and statistical model based approach for the classification of shadow shapes in sonar imagery [J]. IEEE Trans Pattern Anal Machine Intell, 2000, 22(2) : 129-141.
  • 5Zhang Jianshu. Unsupervised image segmentation and pattern recognition for sonar images[D]. Bremen.. Applied Sciences, Hochschule Bremen University, 2004.
  • 6Mignotye M, Collet C, Perez P, et al. Three-class Markovian segmentation of high-resolution sonar im- age[J]. Computer Vision and Image Understanding, 1999, 76(3).. 191-204:.
  • 7Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sides- can sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 90-105.
  • 8Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field esti- mation and segmentation of MRI data [J]. IgEE Transactions on Medical Imaging, 2002, 21 (3) : 193-199.
  • 9Elston G R, Bell J M. Pseudospeetral time-domain modeling of non-Rayleigh reverberation., synthesis and statistical analysis of a sidescan sonar image of sand ripples[J]. IEEE Journal of Oceanic Engineer- ing, 2004, 29(2): 317-329.
  • 10Liu Zhongxuan, Peng Silong. Boundary processing of bidimensional EMD using texture synthesis[J]. IEEE Signal Processing Letters, 2005, 12(1): 33- 36.

共引文献28

同被引文献163

引证文献17

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部