摘要
本文基于OpenCV图像处理技术设计了一种地下交通工程病害检测系统。该系统主要通过图像阈值化、中值滤波、Canny边缘检测、形态学变换等模块,实现地下交通工程中裂纹病害及渗漏水现象的智能识别及标注。经测试,系统检测精度高,对病害现象的分类清晰、定位准确,在实际应用中能够取代传统人工巡检方式,提高地下交通工程运维工作效率。
This paper designs an underground traffic engineering disease detection system based on OpenCV image processing technology.The system mainly realizes intelligent identification and labeling of cracks and water leakage in underground traffic engineering through modules such as image thresholding,median filtering,Canny edge detection and morphological transformation.After testing,the system has high detection accuracy,clear classification and accurate positioning of disease phenomena,which can replace traditional manual inspection methods and improve operation and maintenance work efficiency.
作者
高晶
Gao Jing(Shanxi Information Industry Technology Research Institute Co., Ltd., Taiyuan Shanxi 030012, China)
出处
《山西电子技术》
2020年第2期19-21,共3页
Shanxi Electronic Technology
基金
山西省重点研发计划(指南)项目国际科技合作方面:轨道交通盾构衬砌病害的机器视觉检测系统(201703D421010)。
关键词
OPENCV
图像处理
病害检测
OpenCV technology
image processing
disease detection