摘要
将K1,3任意两点连接起来所形成的图形称为风筝.设H是一个连通图,G∧是一个图类,如果对任意的G∈G∧,G包含一个子图K,K同构于图H,且满足maxx∈V(K){d(G)(x)}≤th<∞∑x∈V(K){d(G)(x)}≤tw<∞那么称H为G∧的轻子图.如果H是一个风筝,就称H为轻风筝.利用权转移方法研究了NIC-平面图中轻风筝的存在性,证明了每个最小度至少为5并且最小边度至少为11的NIC-平面图含有一个最大度至多为29的风筝.
The graph formed by connecting any two points in K1,3 is called kite.Let G∧be a family of graphs and let H be a connected graph,such that at least one member of G contains a subgraph K,K isomorphic to H,such that maxx∈V(K){d(G)(x)}≤th<∞∑x∈V(K){d(G)(x)}≤tw<∞H is called a light subgraph of G∧.If H is kite,then H is called light kite.By discharging method,the existence of light Kite in NIC-Planar Graphs is studied.It is proved that every NIC-planar graph with minimum vertex degree at least 5 and minimum edge degree at least 11 contains kite with maximum degree at most 29.
作者
田京京
TIAN Jing-jing(School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong Shaanxi 723000, China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2020年第4期13-20,共8页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11461038)
陕西理工大学博士启动基金项目(SLGQD-1806).