期刊文献+

NIC-平面图中轻风筝的存在性

Existence of Light Kite in NIC-Planar Graphs
下载PDF
导出
摘要 将K1,3任意两点连接起来所形成的图形称为风筝.设H是一个连通图,G∧是一个图类,如果对任意的G∈G∧,G包含一个子图K,K同构于图H,且满足maxx∈V(K){d(G)(x)}≤th<∞∑x∈V(K){d(G)(x)}≤tw<∞那么称H为G∧的轻子图.如果H是一个风筝,就称H为轻风筝.利用权转移方法研究了NIC-平面图中轻风筝的存在性,证明了每个最小度至少为5并且最小边度至少为11的NIC-平面图含有一个最大度至多为29的风筝. The graph formed by connecting any two points in K1,3 is called kite.Let G∧be a family of graphs and let H be a connected graph,such that at least one member of G contains a subgraph K,K isomorphic to H,such that maxx∈V(K){d(G)(x)}≤th<∞∑x∈V(K){d(G)(x)}≤tw<∞H is called a light subgraph of G∧.If H is kite,then H is called light kite.By discharging method,the existence of light Kite in NIC-Planar Graphs is studied.It is proved that every NIC-planar graph with minimum vertex degree at least 5 and minimum edge degree at least 11 contains kite with maximum degree at most 29.
作者 田京京 TIAN Jing-jing(School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong Shaanxi 723000, China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2020年第4期13-20,共8页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11461038) 陕西理工大学博士启动基金项目(SLGQD-1806).
关键词 NIC-平面图 权转移 风筝 NIC-planar graph discharging method kite
  • 相关文献

参考文献7

二级参考文献19

  • 1ZHANG Zhongfu,LI Jingwen,CHEN Xiang’en,YAO Bing, WANG Wenjie & QIU Pengxiang Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.D(β)-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2006,49(10):1430-1440. 被引量:55
  • 2ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 3ZHANG ZhongFu,CHENG Hui,YAO Bing,LI JingWen,CHEN XiangEn,XU BaoGen.On the adjacent-vertex-strongly-distinguishing total coloring of graphs[J].Science China Mathematics,2008,51(3):427-436. 被引量:79
  • 4张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:96
  • 5孙磊,孙艳丽,董海燕.几类图的相邻顶点可区别的全染色[J].西南师范大学学报(自然科学版),2006,31(4):1-4. 被引量:7
  • 6文丽,吴良大.高等数学[M].北京:北京大学出版社,1999.
  • 7ZHANG Zhong-fu, LIU Lin-zhong, WANG Jian-fang. Adjacent Strong Edge Coloring of Graphs [J]. Applied Mathe- matics Letters, 2002, 15(5) : 623--626.
  • 8LI Jing wen, WANG Zhi-wen, WEN Fei, et al. The Smarandaehely Adjacent-Vertex Distinguishing Total Coloring of Two Kind of 3-Regular Grahps [C]//2010 3rd International Conference on Biomedical Engineering and Informatics. Bei- jing: BMEI, 2010.
  • 9CHEN Xiang-en. On the Adjacent Vertex Distinguishing Total Coloring Numbers of Graphs with △ = 3 [J]. Discrete Mathematics, 2008, 308(17): 4003--4007.
  • 10HULGAN J. Concise Proofs for Adjacent Vertex-Distinguishing Total Colorings [J]. Discrete Mathematics, 2009, 309(8) : 2548--2550.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部