期刊文献+

大白菜BrROP基因家族的生物信息学分析 被引量:2

Bioinformatics Analysis of BrROP Gene Family in Chinese Cabbage
下载PDF
导出
摘要 为了揭示大白菜BrROP基因家族的功能和进化关系,利用生物信息学方法对大白菜BrROP基因家族成员进行了鉴定,并对其基因结构、蛋白质序列、染色体定位、保守结构域、进化关系和表达模式等进行系统分析。结果表明,在大白菜基因组中共鉴定出22个BrROP基因成员,在大白菜染色体上呈不均匀分布;氨基酸序列分析表明,BrROP蛋白的结构较保守,均含有G结构域(G1—G5)、效应因子结合点、插入序列和C端可变区;根据系统发育进行聚类分析,大白菜BrROP基因可被分为4类,GroupⅠ、GroupⅡ、GroupⅢ和GroupⅣ;利用EMBL-EBI数据库对BrROP基因家族进行分析,22个BrROP基因在大白菜根、茎、叶、花和角果中呈组织差异表达。 To reveal the function and phylogenetic relationship of the BrROP gene family in Chinese cabbage,bioinformatics methods were used to identify the BrROP gene family members of Chinese cabbage,and the gene structure,protein sequence,chromosomal distribution,conserved domain,phylogenetic relationship and expression pattern were systematically analyzed.The results showed that 22 BrROP genes were identified in the Chinese cabbage genome,which were unevenly distributed on the chromosome of Chinese cabbage.Amino acid sequence analysis indicated that the structure of BrROP protein was conserved,including G domain(G1-G5),effector binding site,Rho insert region and C-terminal hypervariable region.According to the phylogenetic analysis,BrROP genes were divided into four categories,GroupⅠ,GroupⅡ,GroupⅢand GroupⅣ.The expression of BrROP genes was analyzed using the EMBL-EBI database.22 BrROP genes were differentially expressed in root,stem,leaf,flower and silique.
作者 闫敏 王晗 刘少华 顾小敏 许晔 YAN Min;WANG Han;LIU Shaohua;GU Xiaomin;XU Ye(School of Life Sciences,Chemistry & Chemical Engineering,Jiangsu Second Normal University,Nanjing 211200,China)
出处 《河南农业科学》 北大核心 2020年第4期93-100,共8页 Journal of Henan Agricultural Sciences
基金 江苏省高等学校自然科学基金项目(18KJB180002) 江苏省自然科学基金项目(BK20170756)。
关键词 大白菜 BrROP基因家族 生物信息学 系统分析 Chinese cabbage BrROP gene family Bioinformatics Phylogenetic analysis
  • 相关文献

参考文献4

二级参考文献45

  • 1Alia, Hayashi, H., Sakamoto, A., Murata, N., 1998a. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J., 16(2): 155-161. [doi: 10.1046/j.1365- 313x. 1998.00284.x].
  • 2Alia, Hayashi, H., Chen, T.H.H., Murata, N., 1998b. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21(2):232-239. [doi:10.1046/j.1365-3040.1998.00264.x].
  • 3Alia, Kondo, Y., Sakamoto, A., Nonaka, H., Hayashi, H., Saradhi, P.P., Chen, T.H.H., Murata, N., 1999. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol. Biol., 40(2):279-288. [doi:10.1023/A:100612 1821883].
  • 4Blumwald, E., Grover, A., 2006. Salt Tolerance. In: Halford, N (Ed.), Plant Biotechnology, Current and Future Applications of Genetically Modified Crops. John Wiley & Sons, Ltd., Chichester, UK, p.206-224. [doi:10.1002/0470021 837.ch11].
  • 5Bohnert, H.J., Jensen, R.G., 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol., 14(3): 89-97. [doi:10.1016/0167-7799(96)80929-2].
  • 6Bohnert, H.J., Nelson, D.E., Jensen, R.G., 1995. Adaptations to environmental stresses. Plant Cell, 7(7): 1099-1111. [doi:10.1105/tpc. 7.7.1099].
  • 7Chen. H.H.T., Murata, N., 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci., 13(9):499-505. [doi:10. 10161j.tplants.2008.06.007].
  • 8Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M., Bohnert, H.J., 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. The Plant Cell, 1(7):715-725. [doi:10.1105/tpe.1.7.715].
  • 9Gorham, J., 1995. Betaines in Higher Plants--Biosynthesis and Role in Stress Metabolism. In: Wallsgrove, R.M. (Ed.), Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, Cambridge, p. 171-203.
  • 10Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., Murata, N., 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12(1):133-142. [doi:10.1046/j.1365-313X.1997. 12010133.x].

共引文献21

同被引文献28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部