期刊文献+

一类求解非线性方程的3阶收敛迭代格式 被引量:4

One Class of Third-Order Iteration Methods for Solving Non-Linear Equations
下载PDF
导出
摘要 该文提出了求非线性方程根的3阶收敛的牛顿类迭代方法,并对收敛性进行了证明.该牛顿类迭代方法有效地克服了传统的牛顿迭代方法在目标函数的1阶导数等于0或者接近于0时失效的缺点.通过数值例子来验证该类迭代格式的有效性. In this paper,one class of modified Newton methods for solving non-linear equations is presented.Analysis of convergence shows that the new method is cubically convergent.The main advantage of this method is that it can overcome the shortcoming of Newton′s method which the derivative of the function is either zero or very small of the required root.The effectiveness of the present method is demonstrated by some numerical examples.
作者 开依沙尔·热合曼 KAYSAR Rahman(College of Mathematics and System Science,Xinjiang University,Urumqi Xinjiang 830046,China;Institute of Mathematical Physics,Xinjiang University,Urumqi Xinjiang 830046,China)
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2020年第2期206-208,共3页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11461069) 新疆大学博士启动基金(BS150204)资助项目。
关键词 非线性方程 牛顿方法 3阶收敛 迭代方法 nonlinear equations Newton′s method third-order convergence iterative methods
  • 相关文献

参考文献5

二级参考文献33

  • 1吴新元.解Stiff常微分方程的精确指数拟合法[J].南京大学学报(自然科学版),1997,33(1):1-6. 被引量:4
  • 2S. Weerakoon, T. G, I. Femando. A Variant of Newton' s Method with Accelerated Third - order Convergence [ J ]. Appl. Math. Lett,2000(13) ,87 - 93.
  • 3H. H. H. Homeier, On Newton - type methods with Cubic Convergence[J]. Comput. Appl. Math. 2005 ( 176), 425 - 432.
  • 4Tibor Lukie, Nebojsa M. Ralevic, Geometric Mean Newton' s Method for Simple and Multiple Roots- J]. Applied Mathematics Letters 2008(21), 30 - 36.
  • 5D. J. Evans and B. B. Sanugi, A Comparison of Numerical Means[J]. Intern. Computer Math., 1987(23) ,37 -62.
  • 6吴新元,南京大学学报,1997年,31卷,1期,1页
  • 7Lawrence C T, Tits A L. A computationally efficient feasible se-quential quadratic programming algorithm [J]. SIAM Journal on Optimization, 2001, 11 (4): 1092-1118.
  • 8Yuan Yaxiang. A review of trust region algorithms for optimiza- tion [C]//Ball J M, Hunt J C R. ICM99: Proceedings of the 4th International Congress on Industial and applied mathematics. Edinburgh: Oxford University Press, 2000: 271-282.
  • 9Powell M J D. Convergence properties of a class of minimization algorithms [C]//Mangassarian O L, Meyer R R, Robinson S M. Nonlinear Programming. New York: Academic Press, 1975: 1-27.
  • 10Chen Lifeng, Goldfarb D. Interior-point 12-penalty methods for nonlinear programming with strong global convergence proper- ties [J]. Math Programming, 2006, 108(1): 1-36.

共引文献61

同被引文献18

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部