期刊文献+

基于超双疏表面的纤维阵列可控设计与制备

Controllable Design and Preparation of Fibrous Arrays Based on Superamphiphobic Surfaces
下载PDF
导出
摘要 该文基于超双疏表面对于水、有机溶剂以及高分子熔体的极强排斥性,通过对高分子溶液微流体进行操控并纺丝在超双疏表面上,设计制备出高分子纤维阵列。并通过考察纺丝参数对纤维结构以及直径的影响,展现了微流体纺丝对纤维及其阵列结构良好的可控性。此外,扫描电子显微镜以及激光共聚焦显微镜的成像表明,纤维具有良好的圆柱状形态,并与超双疏表面具有极小的接触面积,可进一步转移至其他衬底。该文所展示的纤维阵列设计与制备方法简单易行且灵活可控,为柔性器件、生物材料以及医用材料的研究打开了新的大门,并有望实际应用于生物支架材料、可穿戴电子设备等领域中。 Based on the extreme repellence of the superamphiphobic surface to water,organic solvents,and polymer melts,this paper reports a novel approach to design and prepare polymer fiber arrays by manipulating polymer solution microfluids and conducting microfluidic spinning on superamphiphobic surfaces.By investigating the influence of spinning parameters on fibrous structures and diameters,it was showed that microfluidic spinning has good controllability to structures of fibers and fibrous arrays.In addition,scanning electron microscopy and laser confocal microscopy imaging showed that the fibers had a good cylindrical morphology and had a very small contact area with the super-dense surface,which could be further transferred to other substrates.The design and preparation method of fibrous arrays presented in this paper is simple and controllable,which opens new doors for researches in the fields of flexible devices,biomaterials materials and medical materials.It is expected to be practically applied to biological scaffold materials and wearable electronic devices.
作者 范岳 王德辉 邓旭 FAN Yue;WANG Dehui;DENG Xu(Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《实验科学与技术》 2020年第2期46-52,共7页 Experiment Science and Technology
基金 中央高校基本科研业务费项目(ZYGX2016J207)。
关键词 纤维阵列 超双疏表面 浸润性 微流体纺丝 可调控性 fibrous arrays superamphiphobic surfaces wettability microfluidic spinning controllability
  • 相关文献

参考文献2

二级参考文献37

  • 1Huang W, Shi X, Ren L, et al. PHBV microspheres - PLGA matrix composite scaffold for bone tissue engineering[ J]. Biomaterials. 2010, 31 ( 15 ) : 4278 - 4285.
  • 2Chen G Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials[J]. Biomaterials. 2005,26(33) : 6565 - 6578.
  • 3Fennessey S F, Farris R J. Fabrication of aligned and molecu- larly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer. 2004, 45(12) : 4217 -4225.
  • 4Courtney T, Sacks M S, Stankus J, et al. Design and analysisof tissue engineering scaffolds that mimic soft tissue mechanical anisotropy[ J]. Biomaterials,2006, 27 (19) : 3631 - 3638.
  • 5Kenar H, Kose G T, Hasirci V. Design of a 3D aligned myocardial tissue construct from biodegradable polyesters [ J ]. J Mater Sci : Mater Med,2010, 21 (3) : 989 - 997.
  • 6Ghasemi-Mobarakeh L, Prabhakaran M P, Morshed M, et al. Electrospun poly ( e- caprolactone )/gelatin nanofibrous scaffolds for nerve tissue engineering[ J]. Biomaterials,2008, 29 (34) : 4532 -4539.
  • 7Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films [ J ]. Adv Mater,2004, 16(4) : 361 -366.
  • 8Zhang D, Chang J. Patterning of electrospun fibers using electroconductive templates [ J ]. Adv Mater, 2007, 19 ( 21 ) : 3664 - 3667.
  • 9Yang D, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning [ J ]. Adv Mater, 2007,19 (21) : 3702 -3706.
  • 10Zhang L L, Goh S H, Lee S Y, et al. Miscibility, melting and crystallization behavior of two bacterial polyester/poly( epichlo- rohydrin-co-ethylene oxide ) blend systems [ J ]. Polymer, 2000, 41(4) : 1429-1439.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部