期刊文献+

基于特征匹配的非刚性大位移光流算法 被引量:2

Non-Rigid and Large Displacement Optical Flow Based on Descriptor Matching
下载PDF
导出
摘要 针对非刚性大位移光流估计问题,提出了一种基于特征匹配的光流优化算法.首先,传统数据项针对整副图像进行一致性假设的策略过于粗放,文中采用了一种根据图像中每个像素特点自适应选择一致性假设的优化方法;其次,针对传统各向同性的平滑项易造成演化过程中图像细节丢失、边缘模糊等问题,提出一种各向异性的平滑项,有利于实现图像细节的光流估计;另外融合特征匹配于变分光流框架中,充分利用特征匹配在大位移条件下的鲁棒性与变分光流的致密性;最后,基于MPI Sintel数据集对本文算法进行定量分析.实验结果表明,本文算法能够实现非刚性大位移光流的准确估计,鲁棒性强,在market_5图像中,该算法比LDOF于AAE和AEPE指标上分别提升了18.9%与21.9%. In order to solve the arithmetic problem of non-rigid and large displacement optical flow,an improved arithmetic was proposed based on descriptor matching for optical flow.In the method,a novel data term was put forward firstly to adaptively select invariable hypothesizes for each pixel.And then,the traditional isotropic smoothness term was optimized to be the anisotropic one for the optical flow estimation of image details.Furthermore,the descriptor matching was applied to optical flow fields,taking advantage of the robust ability of descriptor matching to produce some large displacement correspondences and the ability of dense optical flow.At last,a quantitative analysis of the approach was performed on MPI Sintel.The results show that the proposed method can realize accurate estimation of non-rigid and large displacement optical flow.And the method is superior to LDOF with a relative gain of 18.9%for AAE and 21.9%for AEPE in market_5.
作者 王广龙 田杰 朱文杰 方丹 WANG Guang-long;TIAN Jie;ZHU Wen-jie;FANG Dan(Laboratory of Nanotechnology and Microsystems, Shijiazhuang Campus, Army Engineering University, Shijiazhuang,Hebei 050003, China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第4期421-426,440,共7页 Transactions of Beijing Institute of Technology
基金 国家部委预研基金资助项目(51327030104)。
关键词 特征匹配 光流 大位移 MPI Sintel descriptor matching optical flow large displacement MPI Sintel
  • 相关文献

参考文献3

二级参考文献46

  • 1张力新,安会霞,林旻,邢占峰,曹玉珍.基于图像配准的CT定位像床板影校正[J].天津大学学报,2006,39(11):1375-1378. 被引量:2
  • 2PAPENBERG N, BRUHN A, BROX T, et al. Highly accurate optic flow computation with theoretically justified warping [ J ]. International Journal of Computer Vision, 2006, 67(2) : 141-158.
  • 3LEE S, SONG J. Mobile robot localization using optical flow sensors [ J ]. International Journal of Control, Automation and Systems, 2004, 2(4): 485-493.
  • 4NEWCOMBE R, DAVISON A. Live dense reconstruction with a single moving camera [ C ] // International Conference on Computer Vision and Pattern Recognition. Piscataway : IEEE Computer Society, 2010 : 1-8.
  • 5WEDEL A, BROX T, VAUDREY T, et al. Stereoscopic scene flow computation for 3D motion understanding [ J]. International Journal of Computer Vision, 2010, 95 : 1-23.
  • 6HORN B, SCHUNCK B. Determining optical flow [ J ]. Artificial Intelligence, 1981, 17: 185-203.
  • 7RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physical D, 1992, 60 (4) : 259-268.
  • 8ALLINEY S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm [ J]. IEEE Transactions on Signal Processing, 1997, 45(4): 913-917.
  • 9NIKOLOVA M. A variational approach to remove outliers and impulse noise [ J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 99-120.
  • 10ZACH C, POCK T, BISCHOF H. A duality based approach for real-time TV-L^1 optical flow [ C ] // Proceedings of the DAGM Symposium on Pattern Recognition. Heidelberg: Springer-Verlag, 2007: 23-45.

共引文献25

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部