期刊文献+

一种集成多个机器学习模型的复合材料结构损伤识别方法 被引量:6

Integrated Method of Multiple Machine-Learning Models for Damage Recognition of Composite Structures
下载PDF
导出
摘要 针对基于导波的复合材料结构损伤监测手段在实际工程应用中遇到的问题,结合目前已开展的利用机器学习模型辅助结构损伤识别的经验,提出了一种基于最小边际系数的复合材料结构损伤识别方法。通过采用多个机器学习模型对监测数据进行预测,利用不同机器学习模型之间的差异性和在不同数据分布上的预测置信度,提高整体结构损伤识别的泛化能力。通过试验验证,该方法能明显提高基于导波的复合材料结构损伤识别精度。 In the topic of damage detection of composite structures based on lamb wave technology,damage index is commonly used for damage identification.However,its threshold is largely of expertisedependence and poor performance at knowledge generalization.Therefore,a method based on the concept of least margin is proposed,which integrates even machine learning models and outputs the identification result by polling all models’decision.The proposed method avoids the shortage that damage recognition relies on a single but incomprehensive model,and puts the confidence on a number of most qualified models instead.Significantly higher accuracy of damage identification for composite structures is manifested through test verification.
作者 杨宇 周雨熙 王莉 YANG Yu;ZHOU Yuxi;WANG Li(Aircraft Strength Research Institute of China,Xi’an,710065,China;School of Electronics Engineering and Computer Science,Peking University,Beijing,100871,China)
出处 《数据采集与处理》 CSCD 北大核心 2020年第2期278-287,共10页 Journal of Data Acquisition and Processing
关键词 机器学习 导波 复合材料 结构健康监测 最小边际 machine learning guided wave composites structural health monitoring least margin
  • 相关文献

参考文献1

二级参考文献29

  • 1Keith A Schweikhard , Richards W Lance. John Theisen. et al. Flight Demonstration of X-33 Vehicle Health Management System Components on the F / A-18 Systems Research Aircraft[RJ. NASA/TM-2001-209037. 2005.
  • 2Park H. Mackey R. James M. et al. Analysis of Space Shuttle Main Engine Data using Beacon-based Exception Analysis for Multi-missions] , C]. IEEE Aerospace Conference Proceedings. 2002. 2835 - 2844.
  • 3Park H G. Cannon H. Bajwa A. et al. Hybrid Diagpostic System: Beacon-Based Exception Analysis for Multimissions-Livingstone Integlation [C J. Society for Machinery Failure Prevenhon Technology (MFPT) Conference. Vrginia Beach. VA2004.
  • 4Ferrel B L. Air Vehicle Prognostics & Health Management[C]. Proceedings of IEEE Aerospace Conference. 2006. 145-146.
  • 5Ansari F. Fiber Optic Health Monitoring of Civil Structures using Long Gage and Acoustic Sensors[J]. Smart Materials and Structures, 2005. 14: SI-S7.
  • 6Giurgiutiu V, Zagrai A Characterization of Piezoelectric Wafer Active Sensorsj J] , Journal of Intelligent Material Systems and Structures, 2000,11: 959-975.
  • 7K wun H, Kim s- Y. Light G M. Magnetostrictive Sensor Guided-wave Probes for Structural Health Monitoring of Pipelines and Pressure Vesselsl C]. Proceedings of the 5th International Workshop on SHM, Stanford University. 2005.
  • 8Calkin F T. Flatau A B. Dapino M J. Overview of Magnetostrictive Sensor Technology[JJ. Journal of Intelligent Material Systems and Structures, 2007, 18:1057-1066.
  • 9Varadan V K. Varadan V V. Microsensors , Microelectromechanical Systems (MEMS), and Electronics for Smart Structures and Systems[J]. Smart Materials and Structures. 2000, 9: 953-972.
  • 10Lee B C. Staszewski W 1. Modeling of Lamb Waves for Damage Detection in Metallic Structures: Part II. Wave Interactions with Damage[JJ. Smart Materials and Structures, 2003, 12:815-824.

共引文献45

同被引文献91

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部