期刊文献+

深度信念网络研究进展 被引量:9

Survey of Deep Belief Network
下载PDF
导出
摘要 深度信念网络(Deep Belief Networks,DBN)作为深度学习(Deep Learning,DL)中的重要模型,目前已被成功应用于人脸识别、手写字体识别、医学图像分析处理等诸多领域。从深度信念网络出发,主要做了四个方面的工作:第一,从受限玻尔兹曼机以及深度信念网络的网络结构和学习过程两个方面阐述了深度信念网络的基本原理;第二,从网络结构和学习算法两个方面总结了深度信念网络的研究进展:在网络结构方面,从网络深度、RBM结构和DBN级联三个角度进行归纳;在学习算法方面,从基本算法、优化算法和融合方法三个方面进行梳理;第三,对深度信念网络在医学图像分析领域中的应用进行了总结;第四,总结了目前DBN存在的问题。 As an important model in Deep Learning(DL), Deep Belief Network(DBN)has been successfully applied in face recognition, fingerprint recognition, speech recognition, handwriting recognition, medical image analysis and so on.This paper mainly does four aspects of work about deep belief networks. Firstly, this paper discusses the basic principle of depth belief network from two aspects of restricted Boltzmann machine and depth belief network structure and learning process. Secondly, it summarizes the research progress of depth belief network from two aspects of network structure and learning algorithm. In terms of the network structure, it sums up the process from the three aspects:network depth, RBM structure and DBN cascade. In the learning algorithm, it analyzes the learning process from basic algorithm, optimization algorithm and fusion method. Thirdly, it summarizes the application of deep belief network in medical image analysis.Fourth, it summarizes the existing problems of DBN.
作者 周涛 陆惠玲 霍兵强 ZHOU Tao;LU Huiling;HUO Bingqiang(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;Ningxia Key Laboratory of Intelligent Information and Big Data Processing,Yinchuan 750021,China;School of Science,Ningxia Medical University,Yinchuan 750004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第9期24-32,共9页 Computer Engineering and Applications
基金 国家自然科学基金(No,61561040) 宁夏高等学校一流学科建设(数学学科)(No.NXYLXK2017B09) 宁夏312人才计划项目。
关键词 深度信念网络 网络结构 学习算法 医学图像 Deep Belief Network(DBN) network structure learning algorithm medical image
  • 相关文献

参考文献14

二级参考文献178

  • 1叶明全,胡学钢.基于季节性神经网络的医院门诊量曲线拟合与预测[J].工程图学学报,2005,26(2):83-86. 被引量:3
  • 2熊伟丽,徐保国.基于PSO的SVR参数优化选择方法研究[J].系统仿真学报,2006,18(9):2442-2445. 被引量:66
  • 3李思一,戴蓓蒨,王海祥.基于子带GMM-UBM的广播语音多语种识别[J].数据采集与处理,2007,22(1):14-18. 被引量:2
  • 4高建坡,王煜坚,杨浩,吴镇扬.一种基于KL变换的椭圆模型肤色检测方法[J].电子与信息学报,2007,29(7):1739-1743. 被引量:15
  • 5CASTLEMANKR.数字图像处理[M].北京:电子工业出版社,2002..
  • 6Rabiner L R,Sambur M R.An algorithm for determining the endpoints of isolated utterances[J].The Bell System Technical Journal,1975,54(2):297-315.
  • 7Reynolds D A,Quatieri T F,Dunn R B.Speaker verification using adapted Gaussian mixture models[C] //Digital Signal Processing.2000:19-41.
  • 8Campbell W M,Sturim D E,Reynolds D A.Support vector machines using GMM supervectors for speaker verification[J].IEEE Signal Processing Letters,2006,13:308-11.
  • 9Bilmes JA.Maximum mutual information based reduction strategies for cross-correlation based joint distribution modeling[C] //IEEE Int.Conf.Acoust.,Speech,Signal Processing (ICASSP).Seattle,USA,May 1998.
  • 10Yang H H,Sharna S,van Vuuren S,et al.Relevance of timefrequency features for phonetic and speaker-channel classification[J].Speech Communication,2000,31 (1):35-50.

共引文献197

同被引文献80

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部