期刊文献+

改进RRT算法的室内移动机器人路径规划 被引量:17

Path Planning Using Improved RRT Algorithm for Indoor Mobile Robot
下载PDF
导出
摘要 针对传统RRT(快速扩展随机树)寻路算法由于扩展点的随机选取而存在搜索平均、采样效率低、偏离最优解的缺陷,提出一种偏向目标型的改进RRT算法。该算法采用目标偏向策略和气味扩散法来改善扩展节点的选取,使得随机树的生长趋向于目标点,并提出一种基于3次B样条曲线的路径平滑方法,极大地提升了搜索效率和路径质量。在仿真环境下对算法有效性进行验证,并将算法应用到真实环境下。仿真结果表明,与传统RRT算法相比,改进算法的路径长度缩短约22.1%,且路径更为平滑,在复杂环境中避障能力强。将改进RRT算法应用到Turtlebot2中,在真实环境下开展实验,实验结果证明了该算法的可靠性和实用性。 Aiming at the defects of low sampling efficiency and high deviation from optimal solutions of basic RRT algorithm due to randomly selecting extended nodes, an improved RRT algorithm with goal-biased is proposed. After the extended nodes being selected by using the target bias strategy and the odor diffusion, random trees grow to target points.A path smoothing method based on B-spline curve is proposed, which has higher searching efficiency and path quality.The simulation results demonstrate that the path generated by the proposed algorithm is around 22.1% shorter than that of basic RRT algorithm and the path is smoother as well. Furthermore, the proposed algorithm has stronger ability of avoiding obstacles. Finally, the improved RRT algorithm is applied it to Turtlebot2 in real environment. The experimental results illustrate that the improved RRT algorithm achieves higher reliability and practicability.
作者 刘紫燕 张杰 LIU Ziyan;ZHANG Jie(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第9期190-197,共8页 Computer Engineering and Applications
基金 贵州省科学技术基金(黔科合基础[2016]1054) 贵州省联合资金项目(黔科合LH字[2017]7226号) 贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788) 国家自然科学基金(No.61863006) 贵州省科技计划重点项目(No.[2019]1416)。
关键词 路径规划 RRT算法 目标偏向 气味扩散 B样条曲线 path planning RRT algorithm target bias odor diffusion B-spline curve
  • 相关文献

参考文献6

二级参考文献41

共引文献176

同被引文献145

引证文献17

二级引证文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部