摘要
为进一步提高高校资助工作的精准度,构建基于组合核函数的支持向量机(SVM)高校经济困难生分类模型。根据在校生的消费数据、人员信息及历史资助信息抽取样本特征,利用径向基(RBF)核函数的局部拟合能力及多项式核函数的泛化能力,构建基于RBF核函数及多项式核函数的组合核函数SVM分类模型;采用多重网格搜索法训练模型获取最优核参数和组合核函数的权系数,并对高校经济困难生进行分类预测。实验结果表明:采用构建的模型可对高校经济困难生进行分类预测,与单核核函数SVM、逻辑回归模型、最近邻算法(KNN)相比,其分类准确率显著提升;使用融合特征可增加不同类别样本数据的差异性,有助于提高分类准确率。
In order to further improve the accuracy of college financial aid,a support vector machine(SVM)classification model for college students with financial difficulties based on combined kernel function was constructed.According to the consumption data,personnel information and historical funding information of the students in school,sample features are extracted.Using the local fitting ability of radial basis function(RBF)kernel and the generalization ability of polynomial kernel,a SVM classification model based on RBF kernel and polynomial kernel was constructed;The multi-grid search method was used to train the model to obtain the optimal kernel parameters and the weight coefficients of the combined kernel function,and to classify and predict the students with financial difficulties.The experimental results show that the constructed model can be used to predict the financial difficulties of college students,and compared with single kernel SVM,logistic regression model and nearest neighbor algorithm(KNN),the accuracy of classification is significantly improved;Using fusion features can increase the difference of different types of sample data,and help to improve the accuracy of classification.
作者
莫媛媛
顾明言
张辉宜
MO Yuanyuan;GU Mingyan;ZHANG Huiyi(Information Office,Anhui University of Technology,Maanshan 243032,China)
出处
《安徽工业大学学报(自然科学版)》
CAS
2020年第1期60-65,共6页
Journal of Anhui University of Technology(Natural Science)
基金
中国高等教育学会2016年教育信息化专项重点课题(2016XXZD09)
安徽省教学改革研究重点项目(2018jyxm1050)
安徽工业大学教学改革研究重大委托项目(2016wt03)
安徽工业大学青年教师科研基金项目(QS201714)。
关键词
高校经济困难生
组合核函数
支持向量机
college students with financial difficulties
combined kernel function
support vector machine